A codimension-two resonant bifurcation from a heteroclinic cycle with complex eigenvalues

Robust heteroclinic cycles between equilibria lose stability either through local bifurcations of their equilibria or through global bifurcations. This paper considers a global loss of stability termed a `resonant' bifurcation. This bifurcation is usually associated with the birth or death of a nearby periodic orbit, and generically occurs in either a supercritical or subcritical manner. For a specific robust heteroclinic cycle between equilibria with complex eigenvalues we examine the codimension-two point that separates the supercritical and subcritical. We investigate the bifurcation structure and show the existence of further bifurcations of periodic orbits.

[1]  Martin Krupa,et al.  Asymptotic stability of heteroclinic cycles in systems with symmetry. II , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[3]  K. Heikes,et al.  Convection in a Rotating Layer: A Simple Case of Turbulence , 1980, Science.

[4]  Melbourne,et al.  Asymptotic stability of heteroclinic cycles in systems with symmetry , 1995, Ergodic Theory and Dynamical Systems.

[5]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[6]  Antonio Palacios,et al.  Heteroclinic cycles , 2007, Scholarpedia.

[7]  Bernd Krauskopf,et al.  Resonant Homoclinic Flip Bifurcations , 2000 .

[8]  Arnd Scheel,et al.  Transverse bifurcations of homoclinic cycles , 1997 .

[9]  Michael Field,et al.  Stationary bifurcation to limit cycles and heteroclinic cycles , 1991 .

[10]  S. Chow,et al.  Homoclinic bifurcation at resonant eigenvalues , 1990 .

[11]  Stefan Carlsson,et al.  Symmetry in Perspective , 1998, ECCV.

[12]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[13]  P. Holmes,et al.  Structurally stable heteroclinic cycles , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  M. Golubitsky,et al.  Singularities and Groups in Bifurcation Theory: Volume I , 1984 .

[15]  M. Field Lectures on bifurcations, dynamics and symmetry , 1996 .

[16]  Claire M. Postlethwaite,et al.  Regular and irregular cycling near a heteroclinic network , 2005 .

[17]  R. May,et al.  Nonlinear Aspects of Competition Between Three Species , 1975 .

[18]  Josef Hofbauer,et al.  Heteroclinic cycles in ecological differential equations , 1994 .

[19]  M. Krupa Robust heteroclinic cycles , 1997 .