Information Sciences and Technology

[1]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[2]  Antonio Gulli,et al.  The indexable web is more than 11.5 billion pages , 2005, WWW '05.

[3]  Peter Boros,et al.  Query Segmentation for Web Search , 2003, WWW.

[4]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[5]  Leonid Zhukov,et al.  Methods for MiningWeb Communities: Bibliometric, Spectral, and Flow , 2004, Web Dynamics.

[6]  Daniel E. Rose,et al.  Understanding user goals in web search , 2004, WWW '04.

[7]  Subbarao Kambhampati,et al.  Providing ranked relevant results for web database queries , 2004, WWW Alt. '04.

[8]  G Salton,et al.  Developments in Automatic Text Retrieval , 1991, Science.

[9]  Amanda Spink,et al.  An Analysis of Web Documents Retrieved and Viewed , 2003, International Conference on Internet Computing.

[10]  Thorsten Joachims,et al.  Accurately interpreting clickthrough data as implicit feedback , 2005, SIGIR '05.

[11]  Djoerd Hiemstra,et al.  Language models and probability of relevance , 2001 .

[12]  Gerard Salton,et al.  Improving Retrieval Performance by Relevance Feedback , 1997 .

[13]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[14]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[15]  Steve Chien,et al.  Semantic similarity between search engine queries using temporal correlation , 2005, WWW '05.

[16]  Giles,et al.  Searching the world wide Web , 1998, Science.

[17]  Reiner Kraft,et al.  Mining anchor text for query refinement , 2004, WWW '04.

[18]  Shie Mannor,et al.  Q-Cut - Dynamic Discovery of Sub-goals in Reinforcement Learning , 2002, ECML.

[19]  Amnon Shashua,et al.  Ranking with Large Margin Principle: Two Approaches , 2002, NIPS.

[20]  Krishna Prasad Chitrapura,et al.  Node ranking in labeled directed graphs , 2004, CIKM '04.

[21]  Kwok-Wai Cheung,et al.  Learning User Similarity and Rating Style for Collaborative Recommendation , 2003, Information Retrieval.

[22]  Eric Brill,et al.  Web Search Intent Induction via Automatic Query Reformulation , 2004, NAACL.

[23]  Chris Buckley,et al.  Improving automatic query expansion , 1998, SIGIR '98.

[24]  ChengXiang Zhai,et al.  Exploiting query history for document ranking in interactive information retrieval , 2003, SIGIR '03.

[25]  Kristian J. Hammond,et al.  Mining navigation history for recommendation , 2000, IUI '00.

[26]  Eric Horvitz,et al.  Patterns of search: analyzing and modeling Web query refinement , 1999 .

[27]  Barry Smyth,et al.  Further Experiments on Collaborative Ranking in Community-Based Web Search , 2004, Artificial Intelligence Review.

[28]  Ziming Zhuang,et al.  iHITS: extending HITS for personal interests profiling , 2005, 19th International Conference on Advanced Information Networking and Applications (AINA'05) Volume 1 (AINA papers).

[29]  Shlomo Moran,et al.  The stochastic approach for link-structure analysis (SALSA) and the TKC effect , 2000, Comput. Networks.

[30]  Djoerd Hiemstra,et al.  Using language models for information retrieval , 2001 .

[31]  Krishna Bharat,et al.  When experts agree: using non-affiliated experts to rank popular topics , 2001, TOIS.

[32]  Wei-Ying Ma,et al.  Probabilistic query expansion using query logs , 2002, WWW '02.

[33]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[34]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.

[35]  Nicholas J. Belkin,et al.  A case for interaction: a study of interactive information retrieval behavior and effectiveness , 1996, CHI.

[36]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[37]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[38]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[39]  Silviu Cucerzan,et al.  Re-ranking search results using query logs , 2006, CIKM '06.

[40]  Andrei Z. Broder,et al.  The Connectivity Server: Fast Access to Linkage Information on the Web , 1998, Comput. Networks.

[41]  Hans-Peter Frei,et al.  Concept based query expansion , 1993, SIGIR.

[42]  Yoram Singer,et al.  An Efficient Boosting Algorithm for Combining Preferences by , 2013 .

[43]  Barry Smyth,et al.  A Live-User Evaluation of Collaborative Web Search , 2005, IJCAI.

[44]  Pertti Vakkari,et al.  Subject Knowledge, Source of Terms, and Term Selection in Query Expansion: An Analytical Study , 2002, ECIR.

[45]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[46]  Osmar R. Zaïane,et al.  Finding Similar Queries to Satisfy Searches Based on Query Traces , 2002, OOIS Workshops.

[47]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[48]  Ji-Rong Wen,et al.  Clustering user queries of a search engine , 2001, WWW '01.

[49]  Doug Beeferman,et al.  Agglomerative clustering of a search engine query log , 2000, KDD '00.

[50]  Jon M. Kleinberg,et al.  Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text , 1998, Comput. Networks.

[51]  Rick Kazman,et al.  WebQuery: Searching and Visualizing the Web Through Connectivity , 1997, Comput. Networks.

[52]  Wei-Ying Ma,et al.  Optimizing web search using web click-through data , 2004, CIKM '04.

[53]  Susan T. Dumais,et al.  Optimizing search by showing results in context , 2001, CHI.

[54]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1998, SODA '98.

[55]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[56]  Eric Brill,et al.  Spelling Correction as an Iterative Process that Exploits the Collective Knowledge of Web Users , 2004, EMNLP.

[57]  Mark Craven,et al.  First-Order Learning for Web Mining , 1998, ECML.

[58]  Boris Chidlovskii,et al.  Collaborative Re-Ranking of Search Results , 2000 .