Crowd-powered parameter analysis for visual design exploration

Parameter tweaking is one of the fundamental tasks in the editing of visual digital contents, such as correcting photo color or executing blendshape facial expression control. A problem with parameter tweaking is that it often requires much time and effort to explore a high-dimensional parameter space. We present a new technique to analyze such high-dimensional parameter space to obtain a distribution of human preference. Our method uses crowdsourcing to gather pairwise comparisons between various parameter sets. As a result of analysis, the user obtains a goodness function that computes the goodness value of a given parameter set. This goodness function enables two interfaces for exploration: Smart Suggestion, which provides suggestions of preferable parameter sets, and VisOpt Slider, which interactively visualizes the distribution of goodness values on sliders and gently optimizes slider values while the user is editing. We created four applications with different design parameter spaces. As a result, the system could facilitate the user's design exploration.

[1]  Elizabeth D. Mynatt,et al.  Side views: persistent, on-demand previews for open-ended tasks , 2002, UIST '02.

[2]  Frédo Durand,et al.  Image-driven navigation of analytical BRDF models , 2006, EGSR '06.

[3]  Scott R. Klemmer,et al.  Design as exploration: creating interface alternatives through parallel authoring and runtime tuning , 2008, UIST '08.

[4]  Adam Finkelstein,et al.  Perceptual models of viewpoint preference , 2011, TOGS.

[5]  Yasuyuki Matsushita,et al.  Illumination Brush: Interactive Design of All-Frequency Lighting , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[6]  John Dingliana,et al.  Adding Depth to Cartoons Using Sparse Depth (In)equalities , 2010, Comput. Graph. Forum.

[7]  Ken-ichi Anjyo,et al.  Practice and Theory of Blendshape Facial Models , 2014, Eurographics.

[8]  Radomír Mech,et al.  Metropolis procedural modeling , 2011, TOGS.

[9]  Ronen I. Brafman,et al.  Designing with interactive example galleries , 2010, CHI.

[10]  O. Sorkine Differential Representations for Mesh Processing , 2006 .

[11]  Daniel Cohen-Or,et al.  Image Appearance Exploration by Model‐Based Navigation , 2009, Comput. Graph. Forum.

[12]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[13]  Daniel Cohen-Or,et al.  Micro perceptual human computation for visual tasks , 2012, TOGS.

[14]  Adam Tauman Kalai,et al.  Adaptively Learning the Crowd Kernel , 2011, ICML.

[15]  Benjamin B. Bederson,et al.  Human computation: a survey and taxonomy of a growing field , 2011, CHI.

[16]  Elizabeth D. Mynatt,et al.  Variation in element and action: supporting simultaneous development of alternative solutions , 2004, CHI.

[17]  Michiel van de Panne,et al.  Diverse motion variations for physics-based character animation , 2013, SCA '13.

[18]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[19]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[20]  Mark Sagar Facial performance capture and expressive translation for King Kong , 2006, SIGGRAPH Sketches.

[21]  Jeffrey Heer,et al.  Scented Widgets: Improving Navigation Cues with Embedded Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  Pat Hanrahan,et al.  Exploratory modeling with collaborative design spaces , 2009, SIGGRAPH 2009.

[23]  James T. Miller,et al.  An Empirical Evaluation of the System Usability Scale , 2008, Int. J. Hum. Comput. Interact..

[24]  Siddhartha Chaudhuri,et al.  Attribit: content creation with semantic attributes , 2013, UIST.

[25]  Hisashi Kashima,et al.  Clustering Crowds , 2013, AAAI.

[26]  Sylvain Lefebvre,et al.  Make it stand , 2013, ACM Trans. Graph..

[27]  Katharina Reinecke,et al.  Quantifying visual preferences around the world , 2014, CHI.

[28]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[29]  Katharina Reinecke,et al.  Predicting users' first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness , 2013, CHI.

[30]  Brian P. Bailey,et al.  Voyant: generating structured feedback on visual designs using a crowd of non-experts , 2014, CSCW.