New trends in creep microstructural models for pure metals

Various microstructural rate controlling models of creep are reviewed. They are compared to macroscopic and microscopic data for subgrain, subboundary structures and properties, and internal stress distributions. It is shown that the identification of realistic mechanisms not only requires the examination of activation parameters values, but also necessitates relevant metallographic observations. Recent data on cross slip show that this mechanism could control the creep rate of copper at intermediate temperatures while glide on prismatic planes is active in magnesium in a similar temperature range. For aluminium, subboundary migration plays an important role at intermediate temperatures, and is controlled by the glide of subboundary dislocations on (001). Glide on non compact planes inside subgrains controls the creep rate in this metal at the onset of the high temperature domain. The jog dragging screw model is particularly unrealistic. Additional data on cross slip and glide on non compact planes are needed to generalize the above models to other metals.

[1]  D. Caillard On the origin of high stresses in subboundaries during the creep of aluminium , 1986 .

[2]  U. F. Kocks,et al.  A “universal” temperature scale for plastic flow , 1986 .

[3]  W. Nix,et al.  A dislocation loop model for creep of solid solutions based on the steady state and transient creep properties of Al-5.5 at.% Mg , 1985 .

[4]  A. Couret,et al.  An in situ study of prismatic glide in magnesium—I. The rate controlling mechanism , 1985 .

[5]  P. Haasen,et al.  Screw dislocation networks generated in Ge and Si by stage IV compression , 1985 .

[6]  W. Schröter,et al.  Steady-state deformation at intermediate and high temperatures , 1985 .

[7]  F. Vollertsen,et al.  Double etching — a simple method of investigating subboundary migration during creep , 1984 .

[8]  D. Caillard In situ creep experiments in weak beam conditions, in al at intermediate temperature interaction of dislocations with subboundaries , 1984 .

[9]  O. Sherby,et al.  Unification of Harper-Dorn and power law creep through consideration of internal stress , 1984 .

[10]  Hkh The structure and properties of crystal defects , 1984 .

[11]  M. E. Kassner Power-law breakdown and the dislocation microstructure in type 304 stainless steel , 1984 .

[12]  J. Martín,et al.  Evolution of internal stresses and substructure during creep at intermediate temperatures , 1984 .

[13]  V. Lindroos,et al.  Annihilation of dislocations in small-angle boundaries in A B.C.C.-iron alloy , 1983 .

[14]  H. Mughrabi,et al.  Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals , 1983 .

[15]  U. F. Kocks,et al.  Recovery in deformed copper and nickel single crystals , 1983 .

[16]  J. Martín,et al.  A study relating slip steps and substructure produced during creep of an AlZn alloy , 1983 .

[17]  J. Martín,et al.  Microstructure of aluminium during creep at intermediate temperatures—III. The rate controlling process , 1983 .

[18]  W. Blum On modelling steady state and transient deformation at elevated temperature , 1982 .

[19]  H. Fujita,et al.  The relationship between flow stress and dislocation behaviour in [111] aluminium single crystals , 1982 .

[20]  F. Prinz,et al.  Recovery of dislocation structures in plastically deformed copper and nickel single crystals , 1982 .

[21]  D. Caillard,et al.  Microstructure of aluminium during creep at intermediate temperature—II. In situ study of subboundary properties , 1982 .

[22]  D. Caillard,et al.  Microstructure of aluminium during creep at intermediate temperature—I. dislocation networks after creep , 1982 .

[23]  T. Langdon,et al.  Deformation mechanisms in h.c.p. metals at elevated temperatures—I. Creep behavior of magnesium , 1981 .

[24]  Shin Takeuchi,et al.  Internal stresses in power-law creep , 1981 .

[25]  G. Pharr Some observations on the relation between dislocation substructure and power law breakdown in creep , 1981 .

[26]  W. Nix,et al.  A numerical study of long range internal stresses associated with subgrain boundaries , 1980 .

[27]  J. Parker,et al.  Rate-controlling processes during creep of super-purity aluminium , 1980 .

[28]  O. Sherby,et al.  The stress and temperature dependence of steady-state flow at intermediate temperatures for pure polycrystalline aluminum , 1980 .

[29]  U. F. Kocks,et al.  Thermal recovery processes in deformed aluminum , 1979 .

[30]  Alan K. Miller,et al.  Combining Phenomenology and Physics in Describing the High Temperature Mechanical Behavior of Crystalline Solids , 1979 .

[31]  J. Bonneville,et al.  Cross-slipping process and the stress-orientation dependence in pure copper , 1979 .

[32]  J. Poirier Is power-law creep diffusion-controlled? , 1978 .

[33]  J. Friedel Sur le fluage par déviation , 1977 .

[34]  H. Evans,et al.  A model of creep in pure materials , 1977 .

[35]  J. Poirier On the symmetrical role of cross-slip of screw dislocations and climb of edge dislocations as recovery processes controlling high-temperature creep , 1976 .

[36]  A. S. Argon,et al.  Steady-state creep of single-phase crystalline matter at high temperature , 1976 .

[37]  M. J. Luton,et al.  Stacking fault energy and its influence on high-temperature plastic flow in Zr--Sn alloys , 1974 .

[38]  D. Warrington,et al.  Sub-grain boundary migration in aluminium , 1972 .

[39]  C. H. Sworn,et al.  The weak beam technique as applied to the determination of the stacking-fault energy of copper , 1971 .

[40]  P. Feltham,et al.  On the Creep of Crystals , 1971, September 16.

[41]  W. Blum,et al.  On the stress dependence of the stationary deformation rate , 1969 .

[42]  B. Escaig Sur le glissement dévié des dislocations dans la structure cubique à faces centrées , 1968 .

[43]  V. Lindroos,et al.  The structure and formation of dislocation networks in aluminium-magnesium alloys , 1967 .

[44]  J. E. Dorn,et al.  VISCOUS CREEP OF ALUMINUM NEAR ITS MELTING TEMPERATURE. Technical Report No. 48 , 1957 .

[45]  J. Čadek,et al.  Dislocation structure in the high temperature creep of metals and solid solution alloys: a review , 1986 .

[46]  J. Jonas,et al.  Strength of metals and alloys , 1985 .

[47]  D. Caillard A model of creep at intermediate temperatures in aluminium , 1985 .

[48]  J. Deschamps,et al.  In situ synchrotron radiation topography of NaCI during high temperature creep , 1983 .

[49]  B. Wilshire,et al.  Creep and fracture of engineering materials and structures : proceedings of the Third International Conference held at University College, Swansea, 5th-10th April, 1987 , 1981 .

[50]  J. Poirier Plasticité à haute température des solides cristallins , 1976 .

[51]  B. Escaig L'activation thermique des déviations sous faibles contraintes dans les structures h.c. et c.c. Par , 1968 .