Equations in oligomorphic clones and the Constraint Satisfaction Problem for $ω$-categorical structures
暂无分享,去创建一个
Libor Barto | Michael Pinsker | Michael Kompatscher | Van Trung Pham | Miroslav Olsák | L. Barto | M. Pinsker | M. Kompatscher | M. Olsák
[1] Markus Junker,et al. $${\aleph_{0}}$$ -categorical structures: endomorphisms and interpretations , 2009 .
[2] Manuel Bodirsky,et al. Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.
[3] Manuel Bodirsky,et al. The Complexity of Equality Constraint Languages , 2006, CSR.
[4] Matemáticas. Theory of Relations , 2013 .
[5] R. Fraïssé. Sur l'extension aux relations de quelques propriétés des ordres , 1954 .
[6] Michael Pinsker,et al. PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.
[7] Manuel Bodirsky,et al. Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.
[8] David M. Evans,et al. A counterexample to the reconstruction of ω-categorical structures from their endomorphism monoid , 2018 .
[9] Michael Pinsker,et al. Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.
[10] Manuel Bodirsky. Cores of Countably Categorical Structures , 2007, Log. Methods Comput. Sci..
[11] C. Bergman,et al. Universal Algebra: Fundamentals and Selected Topics , 2011 .
[12] Simon Thomas,et al. Reducts of the random graph , 1991, Journal of Symbolic Logic.
[13] Libor Barto,et al. The wonderland of reflections , 2015, Israel Journal of Mathematics.
[14] Dugald Macpherson,et al. A survey of homogeneous structures , 2011, Discret. Math..
[15] Roland Fraïssé. Theory of relations , 1986 .
[16] Manuel Bodirsky,et al. The Complexity of Equality Constraint Languages , 2006, Theory of Computing Systems.
[17] Manuel Bodirsky,et al. The complexity of temporal constraint satisfaction problems , 2010, JACM.
[18] Christian Pech,et al. Towards a Ryll‐Nardzewski‐type theorem for weakly oligomorphic structures , 2013, Math. Log. Q..
[19] Wilfrid Hodges,et al. A Shorter Model Theory , 1997 .
[20] David M. Evans,et al. A counterexample to the reconstruction of $\omega$-categorical structures from their endomorphism monoids , 2015, 1510.00356.
[21] Michael Pinsker,et al. Schaefer's Theorem for Graphs , 2015, J. ACM.
[22] Wieslaw Kubi's,et al. Fraïssé sequences: category-theoretic approach to universal homogeneous structures , 2007, Ann. Pure Appl. Log..
[23] Michael Kompatscher,et al. On the Update Operation in Skew Lattices , 2018, FLAP.
[24] Dmitriy Zhuk,et al. A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[25] Andrei A. Bulatov,et al. A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
[26] Tomás Feder,et al. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..
[27] V. Pestov,et al. Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .
[28] A uniform Birkhoff theorem , 2015, 1510.03166.
[29] Libor Barto,et al. The algebraic dichotomy conjecture for infinite domain Constraint Satisfaction Problems , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[30] Michael Pinsker,et al. Minimal functions on the random graph , 2010 .
[31] P. Cameron,et al. Oligomorphic permutation groups , 1990 .
[32] Michael Pinsker,et al. Canonical Functions: a proof via topological dynamics , 2016, Contributions Discret. Math..
[33] Michael Pinsker,et al. Reconstructing the topology of clones , 2013, ArXiv.