Investigation of the electronic structure of YFeO3 and Y(HoFe)O3 using X-ray photoelectron and Mössbauer spectroscopy

[1]  I. Yahia,et al.  Effect of Eu3+ on the structural, Magnetic and Mössbauer spectroscopy studies of copper ferrite , 2022, Journal of Magnetism and Magnetic Materials.

[2]  A. El-Denglawey,et al.  Structural, Microstructural, Infrared, and Mössbauer Spectroscopy Study of LuFeO3 Prepared by Solution Combustion Method , 2022, Journal of Superconductivity and Novel Magnetism.

[3]  A. Nikolsky,et al.  Study of the electronic structure of LuFeO3 and Lu(YFe)O3 nanoparticles by X-ray photoelectron spectroscopy and Mossbauer spectra , 2022, Journal of Materials Science: Materials in Electronics.

[4]  K. V. Arjuna Gowda,et al.  The effect of Gd as a dopant in crystal structure and on its electrical and humidity sensing behaviour of Co2+Cr23+O4 for possible application in sensors , 2022, Journal of Materials Science: Materials in Electronics.

[5]  I. Yahia,et al.  Humidity sensing behaviour of Rubidium-doped Magnesium ferrite for sensor applications , 2022, Journal of Materials Science: Materials in Electronics.

[6]  A. El-Denglawey,et al.  Manganese ferrite—polyaniline nanocomposites for microwave absorbers in X band , 2022, Journal of Materials Science: Materials in Electronics.

[7]  R. Rajaramakrishna,et al.  Evaluation of structural, dielectric and LPG gas sensing behavior of porous Ce3+- Sm3+ doped Cobalt nickel ferrite , 2022, Materials Chemistry and Physics.

[8]  E. Longo,et al.  Observation of Dielectric Dispersion and Relaxation Behavior in Ni2+ Substituted Cobalt Ferrite Nanoparticles , 2022, Journal of Materials Chemistry C.

[9]  A. El-Denglawey,et al.  Dosimetry induced modifications in structural, magnetic and Mössbauer spectroscopy studies of 60Co γ-irradiated Co0.5Ni0.5Fe2O4 , 2021, Radiation Physics and Chemistry.

[10]  E. Longo,et al.  Unveiling the shape-selective CoCr2-yScyO4 nanomagnetism , 2021, Applied Surface Science.

[11]  Sandeep B. Somvanshi,et al.  Role of dysprosium in enhancing the humidity sensing performance in manganese zinc ferrites for sensor applications , 2021, Journal of Materials Science: Materials in Electronics.

[12]  Jian Zhuang,et al.  Rapid response in recovery time, humidity sensing behavior and magnetic properties of rare earth(Dy & Ho) doped Mn–Zn ceramics , 2021 .

[13]  B. Vuong,et al.  Synthesis of holmium orthoferrite nanoparticles by the co-precipitation method at high temperature , 2021, Metallurgical and Materials Engineering.

[14]  N. Ayachit,et al.  Correlation of internal strain and size with electrical and magnetic properties of Ce3+-doped manganese ferrimagnetic nanoparticles , 2021, Journal of Materials Science: Materials in Electronics.

[15]  S. Angadi,et al.  Magnetic properties of larger ionic radii samarium and gadalonium doped manganese zinc ferrite nanoparticles prepared by solution combustion method , 2021, Journal of Magnetism and Magnetic Materials.

[16]  P. Krishna,et al.  Neutron Diffraction Magnetic and Mossbauer Spectroscopic Studies of Pb0.8Bi0.2Fe0.728W0.264O3 and Pb0.7Bi0.3Fe0.762W0.231O3 Ceramics , 2021, Journal of Superconductivity and Novel Magnetism.

[17]  N. Ayachit,et al.  Towards shape-oriented Bi-doped CoCr2O4 nanoparticles from theoretical and experimental perspectives: structural, morphological, optical, electrical and magnetic properties , 2021 .

[18]  A. Barba-Pingarrón,et al.  Temperature and frequency dependence of dielectric relaxations in YFeO3 , 2020, Ceramics International.

[19]  V. V. Titov,et al.  Valence state of B and Ta cations in the AB1/2Ta1/2O3 ceramics (A = Ca, Sr, Ba, Pb; B = Fe, Sc) from X-ray photoelectron and Mössbauer spectroscopy data , 2020 .

[20]  M. Marssi,et al.  Valence state of cations in manganites Pr1-xCaxMnO3 (0.3 ≤ x ≤ 0.5) from X-ray diffraction and X-ray photoelectron spectroscopy , 2018 .

[21]  A. Singh,et al.  Cobalt substitution induced magnetodielectric enhancement in multiferroic Bi2Fe4O9 , 2017, 1709.05854.

[22]  A. Bush,et al.  Valence state of manganese and iron ions in La1−xAxMnO3 (A = Ca, Sr) and Bi1−xSrxFeO3 systems from Mn2p, Mn3s, Fe2p and Fe3s X-ray photoelectron spectra. Effect of delocalization on Fe3s spectra splitting , 2015 .

[23]  P. Daniel,et al.  Temperature effect on X-ray photoelectron spectra of 3d transition metal ions , 2014 .

[24]  A. Kozakov,et al.  X-ray photoelectron study of temperature effect on the valence state of Mn in single crystal YMnO3 , 2014 .

[25]  H. Xing,et al.  Dielectric behavior of hexagonal and orthorhombic YFeO3 prepared by modified sol-gel method , 2014, Journal of Electroceramics.

[26]  A. Bush,et al.  Chemical bonding in the Bi1−xSrxFeO3±y system by X-ray photoelectron and Mössbauer spectroscopy , 2013 .

[27]  Hongming Yuan,et al.  The multiferroic perovskite YFeO3 , 2013 .

[28]  V. Rusakov,et al.  SpectrRelax - an application for Mossbauer spectra modeling and fitting , 2012 .

[29]  V. V. Eremkin,et al.  Valence and magnetic state of transition-metal and rare-earth ions in single-crystal multiferroics R , 2011 .

[30]  V. G. Smotrakov,et al.  X-ray photoelectron study of the valence state of iron in iron-containing single-crystal (BiFeO3, PbFe1/2Nb1/2O3), and ceramic (BaFe1/2Nb1/2O3) multiferroics , 2011 .

[31]  R. Pisarev,et al.  Inertia-driven spin switching in antiferromagnets , 2009 .

[32]  J. Schulz,et al.  Term-dependent lifetime broadening effect on the 4d photoelectron spectrum of atomic thulium , 2008 .

[33]  T. Yamashita,et al.  Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials , 2008 .

[34]  R. Pisarev,et al.  Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses , 2005, Nature.

[35]  A. Kirilyuk,et al.  Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 , 2004, Nature.

[36]  Johann Nicolics,et al.  Magneto-optical current sensor by domain wall motion in orthoferrites , 2000, IEEE Trans. Instrum. Meas..

[37]  G. Sawatzky,et al.  In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy , 1999 .

[38]  T. Luhmann,et al.  4d -1 multiplet structure of rare-earth atoms studied by photoelectron-ion coincidence spectroscopy , 1998 .

[39]  H. Hotop,et al.  Experimental and theoretical cross sections for photoionization of metastable Xe*. (6s3P2, 3P0) atoms near threshold , 1997 .

[40]  I. Petrov,et al.  Calculation of photoion-charge resolved 4d-shell photoelectron spectra of europium , 1996 .

[41]  Y. Didosyan Measurements of domain wall velocity by the dark field method , 1994 .

[42]  A. Kirilyuk,et al.  Interaction of the moving domain wall with phonons , 1991 .

[43]  D. Briggs,et al.  Practical surface analysis: By auger and x-ray photoelectron spectroscopy , 1983 .

[44]  V. L. Sukhorukov,et al.  The one-configuration approximation in the calculation of the X-Ray and electron spectra of the transition elements , 1977 .

[45]  R. Laudise Single crystals for bubble domain memories , 1972 .

[46]  A. Potvin,et al.  Effect of volatilization loss in flux crystallization of YFeO3 OR Y3FeO12 , 1971 .

[47]  D. C. Cronemeyer,et al.  Orthoferrite crystal flux-growth morphology and perfection effects , 1970 .

[48]  B. Wanklyn The flux growth of single crystals of rare earth perovskites (orthoferrites, orthochromites and aluminates) , 1969 .

[49]  J. P. Remeika,et al.  Application of orthoferrites to domain-wall devices , 1969 .