A modified bootstrap percolation on a random graph coupled with a lattice

In this paper a random graph model $G_{\mathbb{Z}^2_N,p_d}$ is introduced, which is a combination of fixed torus grid edges in $(\mathbb{Z}/N \mathbb{Z})^2$ and some additional random ones. The random edges are called long, and the probability of having a long edge between vertices $u,v\in(\mathbb{Z}/N \mathbb{Z})^2$ with graph distance $d$ on the torus grid is $p_d=c/Nd$, where $c$ is some constant. We show that, {\em whp}, the diameter $D(G_{\mathbb{Z}^2_N,p_d})=\Theta (\log N)$. Moreover, we consider non-monotonous bootstrap percolation on $G_{\mathbb{Z}^2_N,p_d}$. We prove the presence of phase transitions in mean-field approximation and provide fairly sharp bounds on the error of the critical parameters. Our model addresses interesting mathematical questions of non-monotonous bootstrap percolation, and it is motivated by recent results of brain research.

[1]  Béla Bollobás,et al.  Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions , 2005, Biological Cybernetics.

[2]  Noam Berger,et al.  The diameter of long-range percolation clusters on finite cycles , 2001, Random Struct. Algorithms.

[3]  Tatyana S Turova,et al.  The emergence of connectivity in neuronal networks: From bootstrap percolation to auto-associative memory , 2012, Brain Research.

[4]  Robert Kozma,et al.  Random graph theory and neuropercolation for modeling brain oscillations at criticality , 2015, Current Opinion in Neurobiology.

[5]  M. Talagrand Mean Field Models for Spin Glasses , 2011 .

[6]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[7]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[8]  L. L. Cam,et al.  An approximation theorem for the Poisson binomial distribution. , 1960 .

[9]  Michael Aizenman,et al.  Metastability effects in bootstrap percolation , 1988 .

[10]  Tatyana Turova,et al.  Bootstrap Percolation on a Graph with Random and Local Connections , 2015, 1502.01490.

[11]  R. Schonmann On the Behavior of Some Cellular Automata Related to Bootstrap Percolation , 1992 .

[12]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[13]  M. Newman,et al.  Scaling and percolation in the small-world network model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Karen Gunderson,et al.  A Sharp Threshold for a Modified Bootstrap Percolation with Recovery , 2014 .

[15]  A. Holroyd Sharp metastability threshold for two-dimensional bootstrap percolation , 2002, math/0206132.

[16]  A. Barbour,et al.  Poisson Approximation , 1992 .

[17]  Béla Bollobás,et al.  Large deviations for mean field models of probabilistic cellular automata , 2006 .

[18]  Nicholas Crawford,et al.  Mean-Field Driven First-Order Phase Transitions in Systems with Long-Range Interactions , 2005, math-ph/0501067.

[19]  B. Bollobás The evolution of random graphs , 1984 .

[20]  B. Bollobás,et al.  The phase transition in inhomogeneous random graphs , 2007 .

[21]  Walter J Freeman,et al.  Mechanism and significance of global coherence in scalp EEG , 2015, Current Opinion in Neurobiology.

[22]  H. Duminil-Copin,et al.  The sharp threshold for bootstrap percolation in all dimensions , 2010, 1010.3326.

[23]  A. Enter Proof of Straley's argument for bootstrap percolation , 1987 .

[24]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[25]  F. Manzo,et al.  The Threshold Regime of Finite Volume Bootstrap Percolation , 2001 .

[26]  Svante Janson,et al.  Majority bootstrap percolation on the random graph G(n,p) , 2010, 1012.3535.

[27]  Béla Bollobás,et al.  Large deviations for mean field models of probabilistic cellular automata , 2006, Random Struct. Algorithms.

[28]  H. Kesten,et al.  Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation , 1987 .

[29]  Konstantinos Panagiotou,et al.  Bootstrap percolation with inhibition , 2014, Random Struct. Algorithms.

[30]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[31]  W. Freeman The physiology of perception. , 1991, Scientific American.

[32]  D. Gamarnik,et al.  The diameter of a long range percolation graph , 2002, SODA 2002.

[33]  Béla Bollobás,et al.  The Diameter of a Cycle Plus a Random Matching , 1988, SIAM J. Discret. Math..

[34]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[35]  Daniela Fischer Differential Equations Dynamical Systems And An Introduction To Chaos , 2016 .