The nervous system of Xenacoelomorpha: a genomic perspective

Xenacoelomorpha is, most probably, a monophyletic group that includes three clades: Acoela, Nemertodermatida and Xenoturbellida. The group still has contentious phylogenetic affinities; though most authors place it as the sister group of the remaining bilaterians, some would include it as a fourth phylum within the Deuterostomia. Over the past few years, our group, along with others, has undertaken a systematic study of the microscopic anatomy of these worms; our main aim is to understand the structure and development of the nervous system. This research plan has been aided by the use of molecular/developmental tools, the most important of which has been the sequencing of the complete genomes and transcriptomes of different members of the three clades. The data obtained has been used to analyse the evolutionary history of gene families and to study their expression patterns during development, in both space and time. A major focus of our research is the origin of ‘cephalized’ (centralized) nervous systems. How complex brains are assembled from simpler neuronal arrays has been a matter of intense debate for at least 100 years. We are now tackling this issue using Xenacoelomorpha models. These represent an ideal system for this work because the members of the three clades have nervous systems with different degrees of cephalization; from the relatively simple sub-epithelial net of Xenoturbella to the compact brain of acoels. How this process of ‘progressive’ cephalization is reflected in the genomes or transcriptomes of these three groups of animals is the subject of this paper.

[1]  P. Reddien,et al.  Whole-Body Acoel Regeneration Is Controlled by Wnt and Bmp-Admp Signaling , 2014, Current Biology.

[2]  D. Littlewood,et al.  The early worm: Origins and relationships of the lower flatworms , 2014 .

[3]  A. Sebé-Pedrós,et al.  The Evolution of the GPCR Signaling System in Eukaryotes: Modularity, Conservation, and the Transition to Metazoan Multicellularity , 2014, Genome biology and evolution.

[4]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[5]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[6]  Bret J. Pearson,et al.  Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration , 2013, Development.

[7]  N. Satoh,et al.  Evolutionary Aspects of Variability in bHLH Orthologous Families: Insights from the Pearl Oyster, Pinctada fucata , 2013, Zoological science.

[8]  M. S. Almén,et al.  Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire. , 2013, Gene.

[9]  Katharina J. Hoff,et al.  WebAUGUSTUS—a web service for training AUGUSTUS and predicting genes in eukaryotes , 2013, Nucleic Acids Res..

[10]  Rodrigo Lopez,et al.  Analysis Tool Web Services from the EMBL-EBI , 2013, Nucleic Acids Res..

[11]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[12]  P. Martinez,et al.  The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications , 2012, Frontiers in Zoology.

[13]  P. Martinez,et al.  The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis) , 2012, Organisms Diversity & Evolution.

[14]  L. Moroz Phylogenomics Meets Neuroscience: How Many Times Might Complex Brains Have Evolved? , 2012, Acta biologica Hungarica.

[15]  N. Satoh,et al.  A genomewide survey of bHLH transcription factors in the coral Acropora digitifera identifies three novel orthologous families, pearl, amber, and peridot , 2012, Development Genes and Evolution.

[16]  F. Rentzsch,et al.  Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms , 2012, Development.

[17]  M. S. Almén,et al.  The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi , 2012, PloS one.

[18]  P. Martinez,et al.  Acetylcholinesterase activity in the developing and regenerating nervous system of the acoel Symsagittifera roscoffensis , 2011 .

[19]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[20]  U. Jondelius,et al.  How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. , 2011, Systematic biology.

[21]  R. Copley,et al.  Acoelomorph flatworms are deuterostomes related to Xenoturbella , 2011, Nature.

[22]  T. Schöneberg,et al.  Evolution of GPCR: Change and continuity , 2011, Molecular and Cellular Endocrinology.

[23]  P. Martinez,et al.  Steps towards a centralized nervous system in basal bilaterians: Insights from neurogenesis of the acoel Symsagittifera roscoffensis , 2010, Development, growth & differentiation.

[24]  A. Cardona,et al.  Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis , 2010, Development Genes and Evolution.

[25]  A. Bely,et al.  Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. , 2010, Developmental biology.

[26]  P. Conn,et al.  Metabotropic glutamate receptors: physiology, pharmacology, and disease. , 2010, Annual review of pharmacology and toxicology.

[27]  M. Martindale,et al.  Assessing the root of bilaterian animals with scalable phylogenomic methods , 2009, Proceedings of the Royal Society B: Biological Sciences.

[28]  M. Martindale,et al.  Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura , 2009, BMC Biology.

[29]  M. Nadal,et al.  Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis , 2009, Evolution & development.

[30]  G. Haszprunar Plathelminthes and Plathelminthomorpha — paraphyletic taxa , 2009 .

[31]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[32]  M. Martindale,et al.  Acoel development indicates the independent evolution of the bilaterian mouth and anus , 2008, Nature.

[33]  F. Cebrià Organization of the nervous system in the model planarian Schmidtea mediterranea: An immunocytochemical study , 2008, Neuroscience Research.

[34]  Kazutaka Katoh,et al.  Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..

[35]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[36]  Helgi B. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[37]  F. Guillemot Spatial and temporal specification of neural fates by transcription factor codes , 2007, Development.

[38]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[39]  H. Philippe,et al.  Acoel Flatworms Are Not Platyhelminthes: Evidence from Phylogenomics , 2007, PloS one.

[40]  O. Israelsson Ultrastructural aspects of the 'statocyst' of Xenoturbella (Deuterostomia) cast doubt on its function as a georeceptor. , 2007, Tissue & cell.

[41]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[42]  H. Schiöth,et al.  Identification of novel splice variants of Adhesion G protein-coupled receptors. , 2007, Gene.

[43]  Morgane Thomas-Chollier,et al.  Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics , 2007, BMC Evolutionary Biology.

[44]  C. Lowe,et al.  Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. , 2006, Integrative and comparative biology.

[45]  K. Lundin,et al.  Degenerating epidermal bodies (“pulsatile bodies”) inMeara stichopi (Plathelminthes, Nemertodermatida) , 1996, Zoomorphology.

[46]  Li Heng,et al.  CONSTRUCTING THE TREEFAM DATABASE , 2006 .

[47]  M. Martindale,et al.  Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis , 2005, Development Genes and Evolution.

[48]  Robert Fredriksson,et al.  The GRAFS classification system of G-protein coupled receptors in comparative perspective. , 2005, General and comparative endocrinology.

[49]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[50]  J. Baguñá,et al.  The dawn of bilaterian animals: the case of acoelomorph flatworms , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[51]  Susan Jones,et al.  An overview of the basic helix-loop-helix proteins , 2004, Genome Biology.

[52]  U. Jondelius,et al.  Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. , 2004, Zoology.

[53]  U. Jondelius,et al.  Evolution of the nervous system in Paraphanostoma (Acoela) , 2004 .

[54]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[55]  R. Rieger,et al.  Is the Turbellaria polyphyletic? , 2004, Hydrobiologia.

[56]  S. Tyler,et al.  Frontal organs in the Acoelomorpha (Turbellaria): Ultrastructure and phylogenetic significance , 2004, Hydrobiologia.

[57]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[58]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[59]  M. Williamson,et al.  Neuropeptides in Cnidarians , 2002 .

[60]  François Guillemot,et al.  Proneural genes and the specification of neural cell types , 2002, Nature Reviews Neuroscience.

[61]  M. Williamson,et al.  Neuropeptides in cnidarians : Biology of neglected groups: Cnidaria , 2002 .

[62]  Valérie Ledent,et al.  Phylogenetic analysis of the human basic helix-loop-helix proteins , 2002, Genome Biology.

[63]  M. Vervoort,et al.  The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. , 2001, Genome research.

[64]  U. Jondelius,et al.  Organisation of the nervous system in the Acoela: an immunocytochemical study. , 2001, Tissue & cell.

[65]  U. Jondelius,et al.  An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.) , 2000, Zoomorphology.

[66]  U. Jondelius,et al.  The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. , 2000, Tissue & cell.

[67]  M. Martindale,et al.  The unique developmental program of the acoel flatworm, Neochildia fusca. , 2000, Developmental biology.

[68]  L. Kennet Phylogeny of the Nemertodermatida (Acoelomorpha, Platyhelminthes). A cladistic analysis , 2000 .

[69]  E. Herniou,et al.  Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. , 1999, Science.

[70]  O. Raikova,et al.  A commissural brain! The pattern of 5-HT immunoreactivity in Acoela (Plathelminthes) , 1998, Zoomorphology.

[71]  Vladimir Zima,et al.  Institute of Theoretical Physics, , 1998 .

[72]  K. Lundin Comparative ultrastructure of the epidermal ciliary rootlets and associated structures in species of the Nemertodermatida and Acoela (Plathelminthes) , 1997, Zoomorphology.

[73]  W. Atchley,et al.  A natural classification of the basic helix-loop-helix class of transcription factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Carranza,et al.  Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. , 1997, Molecular biology and evolution.

[75]  Seth Tyler,et al.  Das Phylogenetische System der Plathelminthes , 1986 .

[76]  S. Tyler,et al.  Fine‐Structure and Evolutionary Implications of the Frontal Organ in Turbellaria Acoela. 1 Diopisthoporus gymnopharyngeus sp.n. , 1985 .

[77]  M. Crezée Paratomella rubra an amphi atlantic acoel turbellarian , 1978 .

[78]  S. Tyler,et al.  Ultrastructural evidence for the systematic position of the Nemertodermatida (Turbellaria). , 1977 .

[79]  S. Tyler,et al.  Uniflagellate spermatozoa in Nemertoderma (Turbellaria) and their phylogenetic significance. , 1975, Science.

[80]  M. Crezée Monograph of the solenofilomorphidae (Turbellaria: Acoela) , 1975 .

[81]  M. Scheele,et al.  Internationale Revue der gesamten Hydrobiologie und Hydrographie Bände 1–50 (1908–1965). Register Mit elektronischen Verfahren aufgeschlüsselte Verzeichnisse der 1424 Originalbeiträge , 1965 .

[82]  L. Hyman,et al.  The Invertebrates, Vol. II: Platyhelminthes and Rhynchocoela , 1951 .

[83]  G. Haberlandt,et al.  Die Organisation der Turbellaria Acoela. , 1891 .