The nervous system of Xenacoelomorpha: a genomic perspective
暂无分享,去创建一个
J. Abril | A. Poustka | E. Perea-Atienza | B. Gavilán | P. Martinez | Marta Chiodin | K. Hoff | J. F. Abril
[1] P. Reddien,et al. Whole-Body Acoel Regeneration Is Controlled by Wnt and Bmp-Admp Signaling , 2014, Current Biology.
[2] D. Littlewood,et al. The early worm: Origins and relationships of the lower flatworms , 2014 .
[3] A. Sebé-Pedrós,et al. The Evolution of the GPCR Signaling System in Eukaryotes: Modularity, Conservation, and the Transition to Metazoan Multicellularity , 2014, Genome biology and evolution.
[4] Alexandros Stamatakis,et al. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..
[5] Xun Xu,et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..
[6] Bret J. Pearson,et al. Genome-wide analysis of the bHLH gene family in planarians identifies factors required for adult neurogenesis and neuronal regeneration , 2013, Development.
[7] N. Satoh,et al. Evolutionary Aspects of Variability in bHLH Orthologous Families: Insights from the Pearl Oyster, Pinctada fucata , 2013, Zoological science.
[8] M. S. Almén,et al. Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire. , 2013, Gene.
[9] Katharina J. Hoff,et al. WebAUGUSTUS—a web service for training AUGUSTUS and predicting genes in eukaryotes , 2013, Nucleic Acids Res..
[10] Rodrigo Lopez,et al. Analysis Tool Web Services from the EMBL-EBI , 2013, Nucleic Acids Res..
[11] Jian Wang,et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.
[12] P. Martinez,et al. The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications , 2012, Frontiers in Zoology.
[13] P. Martinez,et al. The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis) , 2012, Organisms Diversity & Evolution.
[14] L. Moroz. Phylogenomics Meets Neuroscience: How Many Times Might Complex Brains Have Evolved? , 2012, Acta biologica Hungarica.
[15] N. Satoh,et al. A genomewide survey of bHLH transcription factors in the coral Acropora digitifera identifies three novel orthologous families, pearl, amber, and peridot , 2012, Development Genes and Evolution.
[16] F. Rentzsch,et al. Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms , 2012, Development.
[17] M. S. Almén,et al. The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi , 2012, PloS one.
[18] P. Martinez,et al. Acetylcholinesterase activity in the developing and regenerating nervous system of the acoel Symsagittifera roscoffensis , 2011 .
[19] Sean R. Eddy,et al. Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..
[20] U. Jondelius,et al. How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. , 2011, Systematic biology.
[21] R. Copley,et al. Acoelomorph flatworms are deuterostomes related to Xenoturbella , 2011, Nature.
[22] T. Schöneberg,et al. Evolution of GPCR: Change and continuity , 2011, Molecular and Cellular Endocrinology.
[23] P. Martinez,et al. Steps towards a centralized nervous system in basal bilaterians: Insights from neurogenesis of the acoel Symsagittifera roscoffensis , 2010, Development, growth & differentiation.
[24] A. Cardona,et al. Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis , 2010, Development Genes and Evolution.
[25] A. Bely,et al. Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. , 2010, Developmental biology.
[26] P. Conn,et al. Metabotropic glutamate receptors: physiology, pharmacology, and disease. , 2010, Annual review of pharmacology and toxicology.
[27] M. Martindale,et al. Assessing the root of bilaterian animals with scalable phylogenomic methods , 2009, Proceedings of the Royal Society B: Biological Sciences.
[28] M. Martindale,et al. Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura , 2009, BMC Biology.
[29] M. Nadal,et al. Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis , 2009, Evolution & development.
[30] G. Haszprunar. Plathelminthes and Plathelminthomorpha — paraphyletic taxa , 2009 .
[31] E. Birney,et al. Pfam: the protein families database , 2013, Nucleic Acids Res..
[32] M. Martindale,et al. Acoel development indicates the independent evolution of the bilaterian mouth and anus , 2008, Nature.
[33] F. Cebrià. Organization of the nervous system in the model planarian Schmidtea mediterranea: An immunocytochemical study , 2008, Neuroscience Research.
[34] Kazutaka Katoh,et al. Recent developments in the MAFFT multiple sequence alignment program , 2008, Briefings Bioinform..
[35] David Haussler,et al. Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..
[36] Helgi B. Schiöth,et al. Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.
[37] F. Guillemot. Spatial and temporal specification of neural fates by transcription factor codes , 2007, Development.
[38] Rodrigo Lopez,et al. Clustal W and Clustal X version 2.0 , 2007, Bioinform..
[39] H. Philippe,et al. Acoel Flatworms Are Not Platyhelminthes: Evidence from Phylogenomics , 2007, PloS one.
[40] O. Israelsson. Ultrastructural aspects of the 'statocyst' of Xenoturbella (Deuterostomia) cast doubt on its function as a georeceptor. , 2007, Tissue & cell.
[41] Keith Bradnam,et al. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..
[42] H. Schiöth,et al. Identification of novel splice variants of Adhesion G protein-coupled receptors. , 2007, Gene.
[43] Morgane Thomas-Chollier,et al. Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics , 2007, BMC Evolutionary Biology.
[44] C. Lowe,et al. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. , 2006, Integrative and comparative biology.
[45] K. Lundin,et al. Degenerating epidermal bodies (“pulsatile bodies”) inMeara stichopi (Plathelminthes, Nemertodermatida) , 1996, Zoomorphology.
[46] Li Heng,et al. CONSTRUCTING THE TREEFAM DATABASE , 2006 .
[47] M. Martindale,et al. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis , 2005, Development Genes and Evolution.
[48] Robert Fredriksson,et al. The GRAFS classification system of G-protein coupled receptors in comparative perspective. , 2005, General and comparative endocrinology.
[49] Pavel A. Pevzner,et al. De novo identification of repeat families in large genomes , 2005, ISMB.
[50] J. Baguñá,et al. The dawn of bilaterian animals: the case of acoelomorph flatworms , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.
[51] Susan Jones,et al. An overview of the basic helix-loop-helix proteins , 2004, Genome Biology.
[52] U. Jondelius,et al. Basiepidermal nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. , 2004, Zoology.
[53] U. Jondelius,et al. Evolution of the nervous system in Paraphanostoma (Acoela) , 2004 .
[54] Michael D. Abràmoff,et al. Image processing with ImageJ , 2004 .
[55] R. Rieger,et al. Is the Turbellaria polyphyletic? , 2004, Hydrobiologia.
[56] S. Tyler,et al. Frontal organs in the Acoelomorpha (Turbellaria): Ultrastructure and phylogenetic significance , 2004, Hydrobiologia.
[57] Stephen M. Mount,et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.
[58] H. Schiöth,et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.
[59] M. Williamson,et al. Neuropeptides in Cnidarians , 2002 .
[60] François Guillemot,et al. Proneural genes and the specification of neural cell types , 2002, Nature Reviews Neuroscience.
[61] M. Williamson,et al. Neuropeptides in cnidarians : Biology of neglected groups: Cnidaria , 2002 .
[62] Valérie Ledent,et al. Phylogenetic analysis of the human basic helix-loop-helix proteins , 2002, Genome Biology.
[63] M. Vervoort,et al. The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. , 2001, Genome research.
[64] U. Jondelius,et al. Organisation of the nervous system in the Acoela: an immunocytochemical study. , 2001, Tissue & cell.
[65] U. Jondelius,et al. An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.) , 2000, Zoomorphology.
[66] U. Jondelius,et al. The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. , 2000, Tissue & cell.
[67] M. Martindale,et al. The unique developmental program of the acoel flatworm, Neochildia fusca. , 2000, Developmental biology.
[68] L. Kennet. Phylogeny of the Nemertodermatida (Acoelomorpha, Platyhelminthes). A cladistic analysis , 2000 .
[69] E. Herniou,et al. Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. , 1999, Science.
[70] O. Raikova,et al. A commissural brain! The pattern of 5-HT immunoreactivity in Acoela (Plathelminthes) , 1998, Zoomorphology.
[71] Vladimir Zima,et al. Institute of Theoretical Physics, , 1998 .
[72] K. Lundin. Comparative ultrastructure of the epidermal ciliary rootlets and associated structures in species of the Nemertodermatida and Acoela (Plathelminthes) , 1997, Zoomorphology.
[73] W. Atchley,et al. A natural classification of the basic helix-loop-helix class of transcription factors. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[74] S. Carranza,et al. Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. , 1997, Molecular biology and evolution.
[75] Seth Tyler,et al. Das Phylogenetische System der Plathelminthes , 1986 .
[76] S. Tyler,et al. Fine‐Structure and Evolutionary Implications of the Frontal Organ in Turbellaria Acoela. 1 Diopisthoporus gymnopharyngeus sp.n. , 1985 .
[77] M. Crezée. Paratomella rubra an amphi atlantic acoel turbellarian , 1978 .
[78] S. Tyler,et al. Ultrastructural evidence for the systematic position of the Nemertodermatida (Turbellaria). , 1977 .
[79] S. Tyler,et al. Uniflagellate spermatozoa in Nemertoderma (Turbellaria) and their phylogenetic significance. , 1975, Science.
[80] M. Crezée. Monograph of the solenofilomorphidae (Turbellaria: Acoela) , 1975 .
[81] M. Scheele,et al. Internationale Revue der gesamten Hydrobiologie und Hydrographie Bände 1–50 (1908–1965). Register Mit elektronischen Verfahren aufgeschlüsselte Verzeichnisse der 1424 Originalbeiträge , 1965 .
[82] L. Hyman,et al. The Invertebrates, Vol. II: Platyhelminthes and Rhynchocoela , 1951 .
[83] G. Haberlandt,et al. Die Organisation der Turbellaria Acoela. , 1891 .