Multilevel Designed Quadrature for Partial Differential Equations with Random Inputs

We introduce a numerical method, multilevel designed quadrature for computing the statistical solution of partial differential equations with random input data. Similar to multilevel Monte Carlo methods, our method relies on hierarchical spatial approximations in addition to a parametric/stochastic sampling strategy. A key ingredient in multilevel methods is the relationship between the spatial accuracy at each level and the number of stochastic samples required to achieve that accuracy. Our sampling is based on flexible quadrature points that are designed for a prescribed accuracy, which can yield less overall computational cost compared to alternative multilevel methods. We propose a constrained optimization problem that determines the number of samples to balance the approximation error with the computational budget. We further show that the optimization problem is convex and derive analytic formulas for the optimal number of points at each level. We validate the theoretical estimates and the performance of our multilevel method via numerical examples on a linear elasticity and a steady state heat diffusion problem.

[1]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[2]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[3]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[4]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[5]  Fabio Nobile,et al.  Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.

[6]  Michael B. Giles,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[7]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[8]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[9]  Gianluca Geraci,et al.  Adaptive Multi-index Collocation for Uncertainty Quantification and Sensitivity Analysis , 2019, International Journal for Numerical Methods in Engineering.

[10]  Raul E. Curto,et al.  A duality proof of Tchakaloff's theorem , 2002 .

[11]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[12]  Florian Heiss,et al.  Likelihood approximation by numerical integration on sparse grids , 2008 .

[13]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[14]  W. Schachermayer,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[15]  R. Tempone,et al.  ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .

[16]  Robert Michael Kirby,et al.  Numerical Integration in Multiple Dimensions with Designed Quadrature , 2018, SIAM J. Sci. Comput..

[17]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[18]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[19]  Hans-Joachim Bungartz,et al.  Multilevel Adaptive Stochastic Collocation with Dimensionality Reduction , 2018 .

[20]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[21]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[22]  Helmut Harbrecht,et al.  On Multilevel Quadrature for Elliptic Stochastic Partial Differential Equations , 2012 .

[23]  Frances Y. Kuo,et al.  Multilevel Higher Order QMC Petrov-Galerkin Discretization for Affine Parametric Operator Equations , 2016, SIAM J. Numer. Anal..

[24]  Michael Griebel,et al.  Multilevel Quadrature for Elliptic Parametric Partial Differential Equations in Case of Polygonal Approximations of Curved Domains , 2015, SIAM J. Numer. Anal..

[25]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[26]  Raul Tempone,et al.  Multi-Index Stochastic Collocation for random PDEs , 2015, 1508.07467.

[27]  Frances Y. Kuo,et al.  Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients , 2015, Foundations of Computational Mathematics.

[28]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[29]  C. Reisinger,et al.  Stochastic Finite Differences and Multilevel Monte Carlo for a Class of SPDEs in Finance , 2012, SIAM J. Financial Math..

[30]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.