An Ontology-Based Model for Representing Image Processing Objectives

This paper investigates what kinds of information are necessary and sufficient to design and evaluate image processing software programs and proposes a representation of these information elements using a computational language performable by vision systems and understandable by experts. The language is built upon a formulation model which distinguishes the specification of a goal and the definition of an input image class. Goals are stated in terms of tasks together with result samples. Image classes are defined by both linguistic and iconic descriptions. The model is implemented as an OWL domain ontology which provides the primitives for the formulation language.

[1]  Steffen Staab,et al.  Semantic Annotation of Images and Videos for Multimedia Analysis , 2005, ESWC.

[2]  Xin Li,et al.  Aerial images segmentation based on SVM , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[3]  Jane Hunter,et al.  Adding Multimedia to the Semantic Web: Building an MPEG-7 ontology , 2001, SWWS.

[4]  Han Reichgelt Knowledge representation - an AI perspective , 1991, Tutorial monographs in cognitive science.

[5]  Guillermo Sapiro,et al.  Interactive Image Segmentation via Adaptive Weighted Distances , 2007, IEEE Transactions on Image Processing.

[6]  Vincent Martin,et al.  A Learning Approach for Adaptive Image Segmentation , 2006, Fourth IEEE International Conference on Computer Vision Systems (ICVS'06).

[7]  Steve A. Chien,et al.  Automating Image Processing for Scientific Data Analysis of a Large Image Database , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[9]  Alfredo Petrosino,et al.  Content-based Image Retrieval by a Fuzzy Scale-space Approach , 2006, Int. J. Pattern Recognit. Artif. Intell..

[10]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Christopher Town,et al.  Ontological inference for image and video analysis , 2006, Machine Vision and Applications.

[12]  Alessandro Saffiotti,et al.  An introduction to the anchoring problem , 2003, Robotics Auton. Syst..

[13]  Bruce A. Draper,et al.  Knowledge-directed vision: control, learning, and integration , 1996, Proc. IEEE.

[14]  Gudula Retz-Schmidt,et al.  Various Views on Spatial Prepositions , 1988, AI Mag..

[15]  Takashi Matsuyama Expert systems for image processing: Knowledge-based composition of image analysis processes , 1989, Comput. Vis. Graph. Image Process..

[16]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[17]  Bruce A. Draper,et al.  ADORE: Adaptive Object Recognition , 1999, ICVS.

[18]  A. Ravishankar Rao,et al.  Towards a texture naming system: Identifying relevant dimensions of texture , 1993, Vision Research.

[19]  William J. Rapaport,et al.  What Did You Mean by That? Misunderstanding, Negotiation, and Syntactic Semantics , 2003, Minds and Machines.

[20]  Marinette Revenu,et al.  CBR for the management and reuse of image-processing expertise: a conversational system , 1999 .

[21]  Vadim Bulitko,et al.  Towards Automated Creation of Image Interpretation Systems , 2003, Australian Conference on Artificial Intelligence.

[22]  Gabriella Sanniti di Baja,et al.  Case-Based-Reasoning for Image Segmentation , 2008, Int. J. Pattern Recognit. Artif. Intell..

[23]  Alok Gupta,et al.  Color and texture fusion: application to aerial image segmentation and GIS updating , 2000, Image Vis. Comput..

[24]  Xin Yang,et al.  Optical aerial image partitioning using level sets based on modified Chan-Vese model , 2008, Pattern Recognit. Lett..

[25]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[26]  M. Thonnat,et al.  Symbol Grounding for Semantic Image Interpretation: From Image Data to Semantics , 2005, Tenth IEEE International Conference on Computer Vision Workshops (ICCVW'05).

[27]  Michael M. Richter,et al.  Image processing in case-based reasoning , 2005, Knowl. Eng. Rev..

[28]  Michael G. Strintzis,et al.  Knowledge-assisted semantic video object detection , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[29]  Xiangrong Zhou,et al.  Vision expert system 3D-IMPRESS for automated construction of three dimensional image processing procedures , 2001, Proceedings Seventh International Conference on Virtual Systems and Multimedia.

[30]  Monique Thonnat,et al.  Ontology based complex object recognition , 2008, Image Vis. Comput..

[31]  Siwei Luo,et al.  Semantics-Based Art Image Retrieval Using Linguistic Variable , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[32]  Piero Zamperoni,et al.  Plus ça va, moins ça va , 1996, Pattern Recognit. Lett..

[33]  Michael G. Strintzis,et al.  Region-Based Image Retrieval Using an Object Ontology and Relevance Feedback , 2004, EURASIP J. Adv. Signal Process..

[34]  Dan Roth,et al.  Learning to detect objects in images via a sparse, part-based representation , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Kaufman,et al.  A New Color-Namiing System for Graphics Languages , 1982, IEEE Computer Graphics and Applications.

[36]  Dani Lischinski,et al.  Colorization using optimization , 2004, SIGGRAPH 2004.

[37]  Bernt Schiele,et al.  Interleaving Object Categorization and Segmentation , 2006, Cognitive Vision Systems.

[38]  Marina Mueller,et al.  Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery , 2004, Pattern Recognit..

[39]  Vincent Martin Vision cognitive : apprentissage supervisé pour la segmentation d'images et de videos. (Cognitive vision: supervised learning for image and video segmentation) , 2007 .

[40]  I. B. Gurevich,et al.  Fundamental concepts and elements of image analysis ontology , 2009, Pattern Recognition and Image Analysis.

[41]  Isabelle Bloch,et al.  Fuzzy spatial relation ontology for image interpretation , 2008, Fuzzy Sets Syst..

[42]  Bernd Neumann,et al.  On scene interpretation with description logics , 2006, Image Vis. Comput..