Early exercise boundaries for American-style knock-out options

Abstract This paper proposes a novel representation for the early exercise boundary of American-style double knock-out options in terms of the simpler optimal stopping boundary of a nested single barrier contract. Such representation only requires the existence, continuity and monotonicity (in time) of the nested single barrier exercise boundary, and these requirements are proved for the whole class of single-factor exponential-Levy processes. To illustrate the practical relevance of our results, a new put-call duality relation is obtained, a real options application is provided and the Fourier space time-stepping method, the COS approximation, and the static hedging portfolio approach are all adapted to the valuation of American-style double knock-out options.

[1]  M. Subrahmanyam,et al.  The Valuation of American Barrier Options Using the Decomposition Technique , 1998 .

[2]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[3]  Guido Germano,et al.  Hilbert transform, spectral filters and option pricing , 2019, Ann. Oper. Res..

[4]  Lenos Trigeorgis,et al.  Real Options in Operations Research: A Review , 2017, Eur. J. Oper. Res..

[5]  Hui Wang,et al.  A Barrier Option of American Type , 2000 .

[6]  Phelim P. Boyle,et al.  An explicit finite difference approach to the pricing of barrier options , 1998 .

[7]  Y. Gagnon,et al.  An analysis of feed-in tariff remuneration models: Implications for renewable energy investment , 2010 .

[8]  Guido Germano,et al.  Fluctuation identities with continuous monitoring and their application to the pricing of barrier options , 2018, Eur. J. Oper. Res..

[9]  P. Carr,et al.  ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS , 1992 .

[10]  S. Jacka Optimal Stopping and the American Put , 1991 .

[11]  Weidong Tian,et al.  The Valuation of American Options for a Class of Diffusion Processes , 2002, Manag. Sci..

[12]  J. Detemple Série Scientifique Scientific Series American Options: Symmetry Properties , 2022 .

[13]  Mark Schroder,et al.  A parity result for American options , 1998 .

[14]  Roger Lee,et al.  PUT‐CALL SYMMETRY: EXTENSIONS AND APPLICATIONS , 2009 .

[15]  M. Broadie,et al.  American Capped Call Options on Dividend-Paying Assets , 1995 .

[16]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[17]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[18]  Jérôme Detemple,et al.  American step options , 2020, Eur. J. Oper. Res..

[19]  Ye Li,et al.  A Barrier Options Approach to Modeling Project Failure: The Case of Hydrogen Fuel Infrastructure , 2016 .

[20]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[21]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[22]  San-Lin Chung,et al.  Static Hedging and Pricing AmericanKnock-Out Options , 2013, The Journal of Derivatives.

[23]  I. Kim The Analytic Valuation of American Options , 1990 .

[24]  Petter Bjerksund,et al.  AMERICAN EXCHANGE OPTIONS AND A PUT‐CALL TRANSFORMATION: A NOTE , 1993 .

[25]  I. Karatzas On the pricing of American options , 1988 .

[26]  H. Pham Optimal stopping, free boundary, and American option in a jump-diffusion model , 1997 .

[27]  Guido Germano,et al.  Spitzer Identity, Wiener-Hopf Factorization and Pricing of Discretely Monitored Exotic Options , 2016, Eur. J. Oper. Res..

[28]  P. Ritchken On Pricing Barrier Options , 1995 .

[29]  Phelim P. Boyle,et al.  Bumping Up Against the Barrier with the Binomial Method , 1994 .

[30]  Yu-hong Liu,et al.  Valuation of n-fold compound barrier options with stochastic interest rates , 2017, Asia Pacific Management Review.

[31]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[32]  Sebastian Jaimungal,et al.  Fourier Space Time-Stepping for Option Pricing With Levy Models , 2007 .

[33]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[34]  David Richard Alexander,et al.  Arithmetic Brownian motion and real options , 2012, Eur. J. Oper. Res..

[35]  C. Oosterlee,et al.  Fourier Cosine Expansions and Put–Call Relations for Bermudan Options , 2012 .

[36]  Aneel Keswani,et al.  How real option disinvestment flexibility augments project NPV , 2006, Eur. J. Oper. Res..

[37]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[38]  Mark D. Schroder,et al.  Changes of Numeraire for Pricing Futures, Forwards, and Options , 1999 .

[39]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[40]  An efficient approximation method for American exotic options , 2007 .

[41]  Guido Germano,et al.  Hilbert transform, spectral filters and option pricing , 2017, Ann. Oper. Res..

[42]  Jean-Charles Rochet,et al.  Changes of numéraire, changes of probability measure and option pricing , 1995, Journal of Applied Probability.

[43]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[44]  Sanjiv Ranjan Das,et al.  Credit Spreads with Dynamic Debt , 2014 .

[45]  F Atisahlia,et al.  Fast and accurate valuation of American barrier options , 2000 .

[46]  E. Mordecki,et al.  Symmetry and duality in Lévy markets , 2006 .

[47]  Cornelis W. Oosterlee,et al.  Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.