Variational Monte Carlo for Interacting Electrons in Quantum Dots

[1]  R. Nieminen,et al.  Diagonalizations on a correlated basis , 2005 .

[2]  S. Reimann,et al.  Stability of vortex structures in quantum dots , 2004, cond-mat/0408448.

[3]  R. Nieminen,et al.  Singlet–triplet oscillations and far-infrared spectrum of four-minima quantum-dot molecule , 2004, cond-mat/0408178.

[4]  R. Nieminen,et al.  Vortex formation in quantum dots in high magnetic fields , 2004, cond-mat/0404704.

[5]  R. Nieminen,et al.  Vortex clusters in quantum dots. , 2004, Physical review letters.

[6]  R. Nieminen,et al.  Rectangular quantum dots in high magnetic fields , 2003, cond-mat/0311639.

[7]  R. Nieminen,et al.  Broken symmetry in density-functional theory: Analysis and cure , 2003, cond-mat/0310412.

[8]  R. Nieminen,et al.  Role of interactions in the far-infrared spectrum of a lateral quantum-dot molecule. , 2003, Physical review letters.

[9]  C. Umrigar,et al.  Erratum: Diffusion Monte Carlo study of circular quantum dots [Phys. Rev. B 62, 8120 (2000)] , 2003, cond-mat/0305710.

[10]  R. Nieminen,et al.  Electronic structure of rectangular quantum dots , 2003, cond-mat/0302410.

[11]  R. M. Nieminen,et al.  Testing of two-dimensional local approximations in the current-spin and spin-density-functional theories , 2003, cond-mat/0301062.

[12]  M. Manninen,et al.  Electronic structure of quantum dots , 2002 .

[13]  R. Nieminen,et al.  Lateral diatomic two-dimensional artificial molecules: Classical transitions and quantum-mechanical counterparts , 2002 .

[14]  R. Nieminen,et al.  Electronic properties of model quantum-dot structures in zero and finite magnetic fields , 2002 .

[15]  R. Nieminen,et al.  Two-electron quantum dot molecule: composite particles and the spin phase diagram. , 2002, Physical review letters.

[16]  K. Roberts,et al.  Thesis , 2002 .

[17]  R. Nieminen,et al.  Various spin-polarization states beyond the maximum-density droplet: A quantum Monte Carlo study , 2001, cond-mat/0112243.

[18]  R. Nieminen,et al.  Wigner molecules in quantum dots: a quantum Monte Carlo study , 2001, cond-mat/0105452.

[19]  R. Nieminen,et al.  Stability of the maximum-density droplet state in quantum dots: a quantum Monte Carlo study , 2000 .

[20]  C. Umrigar,et al.  Diffusion Monte Carlo study of circular quantum dots , 1999, cond-mat/9912166.

[21]  A. Rappe,et al.  Optimization of quantum Monte Carlo wave functions using analytical energy derivatives , 1999, physics/9911005.

[22]  R. Nieminen,et al.  Wave function for quantum-dot ground states beyond the maximum-density droplet , 1999 .

[23]  R. Nieminen,et al.  Many-body wave function for a quantum dot in a weak magnetic field , 1999 .

[24]  R. Nieminen,et al.  VARIATIONAL WAVE FUNCTION FOR A TWO-ELECTRON QUANTUM DOT , 1998 .

[25]  R. Nieminen,et al.  Variational wave function for a quantum dot in a magnetic field: A quantum Monte Carlo study , 1998 .

[26]  R. Nieminen,et al.  Stochastic gradient approximation: An efficient method to optimize many-body wave functions , 1997 .

[27]  J. Jain,et al.  Composite Fermions in the Hilbert Space of the Lowest Electronic Landau Level , 1997, cond-mat/9704031.

[28]  Palacios,et al.  Low-lying excitations of quantum hall droplets. , 1995, Physical review letters.

[29]  D. Ceperley,et al.  New stochastic method for systems with broken time-reversal symmetry: 2D fermions in a magnetic field. , 1993, Physical review letters.

[30]  M. Johnson,et al.  Quantum dots in strong magnetic fields: stability criteria for the maximum density droplet , 1993, cond-mat/9301019.

[31]  S. Girvin,et al.  The Quantum Hall Effect , 1987 .

[32]  Peg Clement,et al.  Information not available , 1986 .

[33]  V. Fock Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld , 1928 .

[34]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .