Variational Monte Carlo for Interacting Electrons in Quantum Dots
暂无分享,去创建一个
[1] R. Nieminen,et al. Diagonalizations on a correlated basis , 2005 .
[2] S. Reimann,et al. Stability of vortex structures in quantum dots , 2004, cond-mat/0408448.
[3] R. Nieminen,et al. Singlet–triplet oscillations and far-infrared spectrum of four-minima quantum-dot molecule , 2004, cond-mat/0408178.
[4] R. Nieminen,et al. Vortex formation in quantum dots in high magnetic fields , 2004, cond-mat/0404704.
[5] R. Nieminen,et al. Vortex clusters in quantum dots. , 2004, Physical review letters.
[6] R. Nieminen,et al. Rectangular quantum dots in high magnetic fields , 2003, cond-mat/0311639.
[7] R. Nieminen,et al. Broken symmetry in density-functional theory: Analysis and cure , 2003, cond-mat/0310412.
[8] R. Nieminen,et al. Role of interactions in the far-infrared spectrum of a lateral quantum-dot molecule. , 2003, Physical review letters.
[9] C. Umrigar,et al. Erratum: Diffusion Monte Carlo study of circular quantum dots [Phys. Rev. B 62, 8120 (2000)] , 2003, cond-mat/0305710.
[10] R. Nieminen,et al. Electronic structure of rectangular quantum dots , 2003, cond-mat/0302410.
[11] R. M. Nieminen,et al. Testing of two-dimensional local approximations in the current-spin and spin-density-functional theories , 2003, cond-mat/0301062.
[12] M. Manninen,et al. Electronic structure of quantum dots , 2002 .
[13] R. Nieminen,et al. Lateral diatomic two-dimensional artificial molecules: Classical transitions and quantum-mechanical counterparts , 2002 .
[14] R. Nieminen,et al. Electronic properties of model quantum-dot structures in zero and finite magnetic fields , 2002 .
[15] R. Nieminen,et al. Two-electron quantum dot molecule: composite particles and the spin phase diagram. , 2002, Physical review letters.
[16] K. Roberts,et al. Thesis , 2002 .
[17] R. Nieminen,et al. Various spin-polarization states beyond the maximum-density droplet: A quantum Monte Carlo study , 2001, cond-mat/0112243.
[18] R. Nieminen,et al. Wigner molecules in quantum dots: a quantum Monte Carlo study , 2001, cond-mat/0105452.
[19] R. Nieminen,et al. Stability of the maximum-density droplet state in quantum dots: a quantum Monte Carlo study , 2000 .
[20] C. Umrigar,et al. Diffusion Monte Carlo study of circular quantum dots , 1999, cond-mat/9912166.
[21] A. Rappe,et al. Optimization of quantum Monte Carlo wave functions using analytical energy derivatives , 1999, physics/9911005.
[22] R. Nieminen,et al. Wave function for quantum-dot ground states beyond the maximum-density droplet , 1999 .
[23] R. Nieminen,et al. Many-body wave function for a quantum dot in a weak magnetic field , 1999 .
[24] R. Nieminen,et al. VARIATIONAL WAVE FUNCTION FOR A TWO-ELECTRON QUANTUM DOT , 1998 .
[25] R. Nieminen,et al. Variational wave function for a quantum dot in a magnetic field: A quantum Monte Carlo study , 1998 .
[26] R. Nieminen,et al. Stochastic gradient approximation: An efficient method to optimize many-body wave functions , 1997 .
[27] J. Jain,et al. Composite Fermions in the Hilbert Space of the Lowest Electronic Landau Level , 1997, cond-mat/9704031.
[28] Palacios,et al. Low-lying excitations of quantum hall droplets. , 1995, Physical review letters.
[29] D. Ceperley,et al. New stochastic method for systems with broken time-reversal symmetry: 2D fermions in a magnetic field. , 1993, Physical review letters.
[30] M. Johnson,et al. Quantum dots in strong magnetic fields: stability criteria for the maximum density droplet , 1993, cond-mat/9301019.
[31] S. Girvin,et al. The Quantum Hall Effect , 1987 .
[32] Peg Clement,et al. Information not available , 1986 .
[33] V. Fock. Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld , 1928 .
[34] R. Needs,et al. Quantum Monte Carlo simulations of solids , 2001 .