Thermofield theory for finite-temperature quantum chemistry.

Thermofield dynamics has proven to be a very useful theory in high-energy physics, particularly since it permits the treatment of both time- and temperature-dependence on an equal footing. We here show that it also has an excellent potential for studying thermal properties of electronic systems in physics and chemistry. We describe a general framework for constructing finite temperature correlated wave function methods typical of ground state methods. We then introduce two distinct approaches to the resulting imaginary time Schrödinger equation, which we refer to as fixed-reference and covariant methods. As an example, we derive the two corresponding versions of thermal configuration interaction theory and apply them to the Hubbard model, while comparing with exact benchmark results.

[1]  G. Chan,et al.  A Time-Dependent Formulation of Coupled-Cluster Theory for Many-Fermion Systems at Finite Temperature. , 2018, Journal of chemical theory and computation.

[2]  Felix Hummel Finite Temperature Coupled Cluster Theories for Extended Systems. , 2018, Journal of chemical theory and computation.

[3]  Run-Qiu Yang Complexity for quantum field theory states and applications to thermofield double states , 2017, 1709.00921.

[4]  Lipeng Chen,et al.  Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach. , 2017, The Journal of chemical physics.

[5]  R. Borrelli,et al.  Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics , 2017, Scientific Reports.

[6]  B. Clark,et al.  Finite-temperature properties of strongly correlated systems via variational Monte Carlo , 2016, 1612.05260.

[7]  R. Santra,et al.  Finite-temperature second-order many-body perturbation theory revisited , 2016, 1609.00492.

[8]  R. Borrelli,et al.  Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach. , 2016, The Journal of chemical physics.

[9]  Emanuel Gull,et al.  Finite temperature quantum embedding theories for correlated systems , 2016, 1611.00395.

[10]  M. Rams,et al.  Variational tensor network renormalization in imaginary time: Benchmark results in the Hubbard model at finite temperature , 2016, 1607.04016.

[11]  A. Das,et al.  Operator description for thermal quantum field theories on an arbitrary path in the real time formalism , 2016, 1605.05165.

[12]  Gustavo E. Scuseria,et al.  Polynomial Similarity Transformation Theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian , 2015, 1512.06111.

[13]  G. Alvarez,et al.  Symmetry-conserving purification of quantum states within the density matrix renormalization group , 2015, 1508.06536.

[14]  S. Hirata,et al.  Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree-Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves. , 2015, The Journal of chemical physics.

[15]  J. Vianna,et al.  Lie Algebras and Generalized Thermal Coherent States , 2015, 1507.00372.

[16]  M. Bañuls,et al.  Thermofield-based chain-mapping approach for open quantum systems , 2015, 1504.07228.

[17]  Gustavo E. Scuseria,et al.  Quasiparticle Coupled Cluster Theory for Pairing Interactions , 2014, 1403.6818.

[18]  S. Shenker,et al.  Multiple shocks , 2013, 1312.3296.

[19]  M. Troyer,et al.  Real time evolution at finite temperatures with operator space matrix product states , 2013, 1305.0504.

[20]  Steven R. White,et al.  Minimally entangled typical thermal state algorithms , 2010, 1002.1305.

[21]  Steven R White,et al.  Minimally entangled typical quantum States at finite temperature. , 2009, Physical review letters.

[22]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[23]  S. White,et al.  Finite-temperature density matrix renormalization using an enlarged Hilbert space , 2005, cond-mat/0510124.

[24]  Debashis Mukherjee,et al.  Reflections on size-extensivity, size-consistency and generalized extensivity in many-body theory , 2005 .

[25]  T. Klamroth,et al.  Simulation of two-photon-photoelectron spectra at a jellium-vacuum interface , 2005 .

[26]  F. Verstraete,et al.  Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.

[27]  T. Klamroth Laser-driven electron transfer through metal-insulator-metal contacts: Time-dependent configuration interaction singles calculations for a jellium model , 2003 .

[28]  D. Mukherjee,et al.  a Finite-Temperature Generalisation of the Coupled Cluster Method: , 2003 .

[29]  J. Maldacena Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[30]  S. Siena,et al.  Thermo field dynamics and quantum algebras , 1998, hep-th/9801031.

[31]  T. Nishino,et al.  Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains , 1997, cond-mat/9710310.

[32]  D. Mukherjee,et al.  A thermal cluster-cumulant theory , 1998 .

[33]  S. Rommer,et al.  Thermodynamic limit of the density matrix renormalization for the spin-1 Heisenberg chain , 1995, cond-mat/9503107.

[34]  Sanyal,et al.  Systematic nonperturbative approach for thermal averages in quantum many-body systems: The thermal-cluster-cumulant method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  D. Mukherjee,et al.  Thermal averaging in quantum many-body systems: a non-perturbative thermal cluster cumulant approach , 1992 .

[36]  T. Evans,et al.  Heisenberg and interaction representations in thermo field dynamics , 1992 .

[37]  A. Klein,et al.  Thermal boson expansions and dynamical symmetry , 1990 .

[38]  T. Hatsuda Mean field theory and boson expansion at finite temperature on the basis of the thermo field dynamics , 1989 .

[39]  M. Suzuki,et al.  Thermo field dynamics of quantum spin systems , 1986 .

[40]  M. Suzuki,et al.  Thermo Field Dynamics in Equilibrium and Non-Equilibrium Interacting Quantum Systems , 1985 .

[41]  H. Umezawa Methods of Quantum Field Theory in Condensed Matter Physics — New Perspectives, Extensions and Applications — , 1984 .

[42]  H. Matsumoto,et al.  Thermo Field Dynamics in Interaction Representation , 1983 .

[43]  H. Umezawa,et al.  Functional methods in thermofield dynamics: A real-time perturbation theory for quantum statistical mechanics , 1983 .

[44]  Werner Israel,et al.  Thermo-field dynamics of black holes☆ , 1976 .

[45]  J. Sokoloff,et al.  Some consequences of the thermal Hartree-Fock approximation at zero temperature , 1967 .

[46]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[47]  N. Mermin STABILITY OF THE THERMAL HARTREE-FOCK APPROXIMATION , 1963 .

[48]  T. Matsubara A New Approach to Quantum-Statistical Mechanics , 1955 .

[49]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .