A Level Set Formulation of Geodesic Curvature Flow on Simplicial Surfaces
暂无分享,去创建一个
[1] Roman Goldenberg,et al. Fast Geodesic Active Contours , 1999, Scale-Space.
[2] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[3] Ron Kimmel,et al. Geometric curve flows on parametric manifolds , 2007, J. Comput. Phys..
[4] J. Sethian,et al. FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .
[5] M. Gage. Curve shortening makes convex curves circular , 1984 .
[6] J. Sponring. The entropy of scale-space , 1996, Proceedings of 13th International Conference on Pattern Recognition.
[7] Luc Florack,et al. Understanding and Modeling the Evolution of Critical Points under Gaussian Blurring , 2002, ECCV.
[8] L. Evans,et al. Motion of level sets by mean curvature. II , 1992 .
[9] Andrew P. Witkin,et al. Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[10] Baba C. Vemuri,et al. Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[11] Joachim Weickert,et al. A semidiscrete nonlinear scale-space theory and its relation to the Perona - Malik paradox , 1996, TFCV.
[12] Tony Lindeberg,et al. Scale-space behaviour of local extrema and blobs , 1992, Journal of Mathematical Imaging and Vision.
[13] Andrew P. Witkin,et al. Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.
[14] James A. Sethian,et al. Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics , 1993, Exp. Math..
[15] Luc Florack,et al. The Topological Structure of Scale-Space Images , 2000, Journal of Mathematical Imaging and Vision.
[16] J. Sethian,et al. Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .
[17] J. Weickert. Nonlinear diffusion scale-spaces: From the continuous to the discrete setting , 1996 .
[18] Kaleem Siddiqi,et al. Geometric heat equation and nonlinear diffusion of shapes and images , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
[19] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[20] Ron Kimmel,et al. Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..
[21] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[22] K. Mikula,et al. Evolution of curves on a surface driven by the geodesic curvature and external force , 2006 .
[23] Tony Lindeberg,et al. Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.
[24] M. Gage,et al. The heat equation shrinking convex plane curves , 1986 .
[25] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[26] Tony Lindeberg,et al. On the Axiomatic Foundations of Linear Scale-Space , 1997, Gaussian Scale-Space Theory.
[27] T. O’Neil. Geometric Measure Theory , 2002 .
[28] Jiansong Deng,et al. Scale-Space Analysis of Discrete Filtering over Arbitrary Triangulated Surfaces , 2009, SIAM J. Imaging Sci..
[29] J. Weickert. Scale-Space Properties of Nonlinear Diffusion Filtering with a Diffusion Tensor , 1994 .
[30] Steven J. Gortler,et al. Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..
[31] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[32] Tony Lindeberg,et al. Scale-space theory : A framework for handling image structures at multiple scales , 1996 .
[33] M. Grayson. Shortening embedded curves , 1989 .
[34] S. Osher,et al. Motion of curves constrained on surfaces using a level-set approach , 2002 .
[35] Guillermo Sapiro,et al. Geodesic Active Contours , 1995, International Journal of Computer Vision.
[36] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[37] Alan L. Yuille,et al. Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[38] Jon Sporring,et al. The entropy of scale-space , 1996, ICPR.
[39] Luiz Velho,et al. Discrete scale spaces via heat equation , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.
[40] Tony Lindeberg Kth. Scale-space: A framework for handling image structures at multiple scales , 1996 .
[41] J. Koenderink. The structure of images , 2004, Biological Cybernetics.
[42] Achim Hummel,et al. Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.
[43] M. Gage,et al. Curve shortening on surfaces , 1990 .
[44] Dezhong Chen,et al. Curve Shortening Flow in a Riemannian Manifold , 2003, math/0312463.
[45] Robert Hummel,et al. Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..
[46] Jiansong Deng,et al. Diffusion Equations over Arbitrary Triangulated Surfaces for Filtering and Texture Applications , 2008, IEEE Transactions on Visualization and Computer Graphics.
[47] Max A. Viergever,et al. Scale Space Hierarchy , 2003, Journal of Mathematical Imaging and Vision.
[48] Demetri Terzopoulos,et al. Snakes: Active contour models , 2004, International Journal of Computer Vision.