Selfregulation of behaviour in animal societies

The ordinary differential equation which transformes the game theoretical model of Maynard-Smith into a dynamical system is discussed and some important theorems and applications to symmetric contests in animal societies are presented.

[1]  J. D. Cowan,et al.  Statistical Mechanics of Nervous Nets , 1968 .

[2]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[3]  R. Trivers Parental investment and sexual selection , 1972 .

[4]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[5]  K. Hadeler,et al.  Mathematik für Biologen , 1974 .

[6]  J. M. Smith The theory of games and the evolution of animal conflicts. , 1974, Journal of theoretical biology.

[7]  Ein grundlegendes Selektionsmodell , 1974 .

[8]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[9]  John Maynard Smith,et al.  The logic of asymmetric contests , 1976, Animal Behaviour.

[10]  K Sigmund,et al.  Dynamical systems under constant organization I. Topological analysis of a family of non-linear differential equations--a model for catalytic hypercycles. , 1978, Bulletin of mathematical biology.

[11]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[12]  C. Cannings,et al.  The Generalized War of Attrition , 1997 .

[13]  Peter Schuster,et al.  Dynamical systems under constant organiza-tion III: Cooperative and competitive behaviour of hypercy , 1979 .

[14]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[15]  P. Taylor Evolutionarily stable strategies with two types of player , 1979, Journal of Applied Probability.

[16]  Geoffrey Parker,et al.  SEXUAL SELECTION AND SEXUAL CONFLICT , 1979 .

[17]  K Sigmund,et al.  A note on evolutionary stable strategies and game dynamics. , 1979, Journal of theoretical biology.

[18]  P. Schuster,et al.  Dynamical Systems Under Constant Organization II: Homogeneous Growth Functions of Degree $p = 2$ , 1980 .

[19]  E. C. Zeeman,et al.  Population dynamics from game theory , 1980 .

[20]  E. Zeeman Dynamics of the evolution of animal conflicts , 1981 .

[21]  Josef Hofbauer,et al.  On the occurrence of limit cycles in the Volterra-Lotka equation , 1981 .

[22]  P. Hammerstein The role of asymmetries in animal contests , 1981, Animal Behaviour.

[23]  Josef Hofbauer,et al.  A general cooperation theorem for hypercycles , 1981 .

[24]  P. Schuster,et al.  Coyness, philandering and stable strategies , 1981, Animal Behaviour.