The orbital angular momentum (OAM) carried by optical beams is a useful quantity for encoding information. This form of encoding has been incorporated into various works ranging from telecommunications to quantum cryptography, most of which require methods that can rapidly process the OAM content of a beam. Among current state-of-the-art schemes that can readily acquire this information are so-called OAM sorters, which consist of devices that spatially separate the OAM components of a beam. Such devices have found numerous applications in optical communications, a field that is in constant demand for additional degrees of freedom, such as polarization and wavelength, into which information can also be encoded. Here, we report the implementation of a device capable of sorting a beam based on its OAM and polarization content, which could be of use in works employing both of these degrees of freedom as information channels. After characterizing our fabricated device, we demonstrate how it can be used for quantum communications via a quantum key distribution protocol. © 2017 Optical Society of America OCIS codes: (230.3720) Liquid-crystal devices; (260.6042) Singular optics; (270.5568) Quantum cryptography. References and links 1. H. Rubinsztein-Dunlop, A. Forbes, M. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M.J. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner, “Roadmap on structured light,” J. Opt. 19(1), 013001 (2016). 2. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45(11), 8185 (1992). 3. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across vienna,” New J. Phys. 16(11), 113028 (2014). 4. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photon. 6(7), 488–496 (2012). 5. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photon. 7(1), 66–106 (2015). 6. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14(3), 033001 (2012). 7. A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H. Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner, B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi, “High-dimensional intra-city quantum cryptography with structured photons,” arXiv preprint arXiv:1612.05195 (2016). 8. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113(6), 060503 (2014). 9. G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010). Vol. 25, No. 17 | 21 Aug 2017 | OPTICS EXPRESS 19832 #295105 https://doi.org/10.1364/OE.25.019832 Journal © 2017 Received 3 May 2017; revised 24 Jun 2017; accepted 24 Jul 2017; published 7 Aug 2017 10. M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W. Boyd, “Near-perfect sorting of orbital angular momentum and angular position states of light,” Opt. Express 20(22), 24444–24449 (2012). 11. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013). 12. M. P. Lavery, D. J. Robertson, G. C. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20(3), 2110–2115 (2012). 13. M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett, D. J. Gauthier, and R. W. Boyd, “High-dimensional quantum cryptography with twisted light,” New J. Phys. 17, 033033 (2015). 14. V. Grillo, A. H. Tavabi, F. Venturi, H. Larocque, R. Balboni, G. C. Gazzadi, S. Frabboni, P.-H. Lu, E. Mafakheri, F. Bouchard, R. E. Dunin-Borkowski, R. W. Boyd, M. P. J. Lavery, M. J. Padgett, and E. Karimi, “Measuring the orbital angular momentum spectrum of an electron beam,” Nat. Commun. 8, 15536 (2017). 15. B. J. McMorran, T. R. Harvey, and M. P. Lavery, “Efficient sorting of free electron orbital angular momentum,” New J. Phys. 19(2), 023053 (2017). 16. S. Pancharatnam, “Generalized theory of interference and its applications,” Proc. Indian Acad. Sci. A 44(6), 398–417 (1956). 17. M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. A 392(1802), 45–57 (1984). 18. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88(22), 221102 (2006). 19. Z. Bomzon, V. Kleiner, and E. Hasman, “Pancharatnam–berry phase in space-variant polarization-state manipulations with subwavelength gratings,” Opt. Lett. 26(18), 1424–1426 (2001). 20. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006). 21. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103(1), 013601 (2009). 22. L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13(6), 064001 (2011). 23. E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82(2), 022115 (2010). 24. G. F. Walsh, “Pancharatnam-berry optical element sorter of full angular momentum eigenstate,” Opt. Express 24(6), 6689–6704 (2016). 25. H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt. 18(12), 124002 (2016). 26. W. Hossack, A. Darling, and A. Dahdouh, “Coordinate transformations with multiple computer-generated optical elements,” J. Mod. Opt. 34(9), 1235–1250 (1987). 27. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Light propagation in a birefringent plate with topological charge,” Opt. Lett. 34(8), 1225–1227 (2009). 28. V. Chigrinov, A. Muravski, H. S. Kwok, H. Takada, H. Akiyama, and H. Takatsu, “Anchoring properties of photoaligned azo-dye materials,” Phys. Rev. E 68(6), 061702 (2003). 29. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for uv-ir wavelengths,” Opt. Express 17(14), 11926–11934 (2009). 30. H. Wu, W. Hu, H.-c. Hu, X.-w. Lin, G. Zhu, J.-W. Choi, V. Chigrinov, and Y.-q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using dmd based lithography system,” Opt. Express 20(15), 16684–16689 (2012). 31. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015). 32. M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22(10), 12691–12706 (2014). 33. T.-C. Poon and T. Kim, Engineering Optics with MATLAB® (World Scientific Publishing Co Inc, 2006). 34. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014). 35. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key distribution protocol,” Phys. Rev. Lett. 85(2), 441 (2000). 36. Y. Guo, M. Jiang, C. Peng, K. Sun, O. Yaroshchuk, O. Lavrentovich, and Q.-H. Wei, “High-resolution and highthroughput plasmonic photopatterning of complex molecular orientations in liquid crystals,” Adv. Mater. 28(12) 2353–2358 (2016). 37. L. A. Romero and F. M. Dickey, “Theory of optimal beam splitting by phase gratings. I. one-dimensional gratings,” J. Opt. Soc. Am. A 24(8), 2280–2295 (2007). 38. D. Prongué, H.-P. Herzig, R. Dändliker, and M. T. Gale, “Optimized kinoform structures for highly efficient fan-out elements,” Appl. Opt. 31(26), 5706–5711 (1992). 39. L. De Sio, D. E. Roberts, Z. Liao, S. Nersisyan, O. Uskova, L. Wickboldt, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Digital polarization holography advancing geometrical phase optics,” Opt. Express 24(16), 18297–18306 Vol. 25, No. 17 | 21 Aug 2017 | OPTICS EXPRESS 19833
[1]
Ebrahim Karimi,et al.
Spin-orbit hybrid entanglement of photons and quantum contextuality
,
2010,
1103.3962.
[2]
L. Marrucci,et al.
Tunable supercontinuum light vector vortex beam generator using a q-plate.
,
2013,
Optics letters.
[3]
J. P. Woerdman,et al.
Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes.
,
1992,
Physical review. A, Atomic, molecular, and optical physics.
[4]
L. Marrucci,et al.
Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation
,
2006,
0712.0101.
[5]
Ebrahim Karimi,et al.
Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface
,
2014,
Light: Science & Applications.
[6]
Erez Hasman,et al.
Dielectric gradient metasurface optical elements
,
2014,
Science.
[7]
Ebrahim Karimi,et al.
Quantum information transfer from spin to orbital angular momentum of photons.
,
2008,
Physical review letters.
[8]
W. J. Hossack,et al.
Coordinate Transformations with Multiple Computer-generated Optical Elements
,
1987
.
[9]
N. Tabiryan,et al.
Polarization Imaging Components Based on Patterned Photoalignment
,
2008
.
[10]
R Dändliker,et al.
Optimized kinoform structures for highly efficient fan-out elements.
,
1992,
Applied optics.
[11]
Nelson Tabiryan,et al.
Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths.
,
2009,
Optics express.
[12]
M. Kudenov,et al.
Fabrication of ideal geometric-phase holograms with arbitrary wavefronts
,
2015
.
[13]
Ebrahim Karimi,et al.
Light propagation in a birefringent plate with topological charge.
,
2008,
Optics letters.
[14]
A. Willner,et al.
Optical communications using orbital angular momentum beams
,
2015
.
[15]
R. Boyd,et al.
Arbitrary optical wavefront shaping via spin-to-orbit coupling
,
2016,
1608.06603.
[16]
A. Zeilinger,et al.
Communication with spatially modulated light through turbulent air across Vienna
,
2014,
1402.2602.
[17]
Wei Hu,et al.
Arbitrary Photo-Patterning in Liquid Crystal Alignments Using DMD Based Lithography System
,
2012
.
[18]
Ebrahim Karimi,et al.
Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications
,
2011
.
[19]
Hoi Sing Kwok,et al.
Anchoring properties of photoaligned azo-dye materials.
,
2003,
Physical review. E, Statistical, nonlinear, and soft matter physics.
[20]
A. Willner,et al.
Terabit free-space data transmission employing orbital angular momentum multiplexing
,
2012,
Nature Photonics.
[21]
G. Vallone,et al.
Free-space quantum key distribution by rotation-invariant twisted photons.
,
2014,
Physical review letters.
[22]
Shor,et al.
Simple proof of security of the BB84 quantum key distribution protocol
,
2000,
Physical review letters.
[23]
R. Boyd,et al.
Measuring the orbital angular momentum spectrum of an electron beam
,
2017,
Nature Communications.
[24]
L. Marrucci,et al.
Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media.
,
2006,
Physical review letters.
[25]
Johannes Courtial,et al.
Refractive elements for the measurement of the orbital angular momentum of a single photon.
,
2012,
Optics express.
[26]
Robert W Boyd,et al.
Near-perfect sorting of orbital angular momentum and angular position states of light.
,
2012,
Optics express.
[27]
M. Berry.
Quantal phase factors accompanying adiabatic changes
,
1984,
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[28]
F. Dickey,et al.
Theory of optimal beam splitting by phase gratings. I. One-dimensional gratings.
,
2007,
Journal of the Optical Society of America. A, Optics, image science, and vision.
[29]
Halina Rubinsztein-Dunlop,et al.
Roadmap on structured light
,
2016
.
[30]
Gilles Brassard,et al.
Quantum cryptography: Public key distribution and coin tossing
,
2014,
Theor. Comput. Sci..
[31]
Boris Ya Zeldovich,et al.
Broadband waveplate lenses.
,
2016,
Optics express.
[32]
Oleg Yaroshchuk,et al.
High‐Resolution and High‐Throughput Plasmonic Photopatterning of Complex Molecular Orientations in Liquid Crystals
,
2016,
Advanced materials.
[33]
D. Gauthier,et al.
High-dimensional quantum cryptography with twisted light
,
2014,
1402.7113.
[34]
E Hasman,et al.
Pancharatnam--Berry phase in space-variant polarization-state manipulations with subwavelength gratings.
,
2001,
Optics letters.
[35]
B. Thid'e,et al.
Encoding many channels on the same frequency through radio vorticity: first experimental test
,
2011,
1107.2348.
[36]
S. Serak,et al.
Thin waveplate lenses of switchable focal length--new generation in optics.
,
2015,
Optics express.
[37]
Robert W Boyd,et al.
Efficient separation of the orbital angular momentum eigenstates of light
,
2013,
Nature Communications.