Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks.

GeSn alloys with Sn contents of 8.4 % and 10.7 % are grown pseudomorphically on Ge buffers on Si (001) substrates. The alloys as-grown are compressively strained, and therefore indirect bandgap. Undercut GeSn on Ge microdisk structures are fabricated and strained by silicon nitride stressor layers, which leads to tensile strain in the alloys, and direct bandgap photoluminescence in the 3-5 µm gas sensing window of the electromagnetic spectrum. The use of pseudomorphic layers and external stress mitigates the need for plastic deformation to obtain direct bandgap alloys. It is demonstrated, that the optically pumped light emission overlaps with the methane absorption lines, suggesting that GeSn alloys are well suited for mid-infrared integrated gas sensors on Si chips.

[1]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[2]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[3]  Krishna C. Saraswat,et al.  Direct Bandgap Light Emission from Strained Germanium Nanowires Coupled with High-Q Nanophotonic Cavities. , 2015, Nano letters.

[4]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[5]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[6]  D. Paul,et al.  Extending the emission wavelength of Ge nanopillars to 2.25 μm using silicon nitride stressors. , 2015, Optics express.

[7]  Yi-Chiau Huang,et al.  Highly selective dry etching of germanium over germanium-tin (Ge(1-x)Sn(x)): a novel route for Ge(1-x)Sn(x) nanostructure fabrication. , 2013, Nano letters.

[8]  Gregor Mussler,et al.  Optical Transitions in Direct-Bandgap Ge1–xSnx Alloys , 2015 .

[9]  Wei Wang,et al.  Relaxed and Strained Patterned Germanium-Tin Structures: A Raman Scattering Study , 2013 .

[10]  Feng Chen,et al.  Direct-bandgap light-emitting germanium in tensilely strained nanomembranes , 2011, Proceedings of the National Academy of Sciences.

[11]  R W Millar,et al.  Analysis of Ge micro-cavities with in-plane tensile strains above 2. , 2016, Optics express.

[12]  J. Kolodzey,et al.  Properties of pseudomorphic and relaxed germanium1−xtinx alloys (x < 0.185) grown by MBE , 2017 .

[13]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[14]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[15]  M. Guzzi,et al.  Ge Crystals on Si Show Their Light , 2014 .

[16]  P. Biagioni,et al.  Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates , 2016, 1603.08700.

[17]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[18]  Isabelle Sagnes,et al.  All‐Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities , 2015 .

[19]  Isabelle Sagnes,et al.  Direct Band Gap Germanium Microdisks Obtained with Silicon Nitride Stressor Layers , 2016 .

[20]  T. Kamins,et al.  Strained Pseudomorphic Ge1–xSnx Multiple Quantum Well Microdisk Using SiNy Stressor Layer , 2016 .

[21]  K. Saraswat,et al.  Atomic layer deposition of Al2O3 on germanium-tin (GeSn) and impact of wet chemical surface pre-treatment , 2013 .

[22]  Isabelle Sagnes,et al.  Tensile-strained germanium microdisks , 2013 .

[23]  Gregor Mussler,et al.  Tensely strained GeSn alloys as optical gain media , 2013 .

[24]  Krishna C. Saraswat,et al.  Direct bandgap germanium-on-silicon inferred from 5.7% 〈100〉 uniaxial tensile strain [Invited] , 2014 .

[25]  Douglas J. Paul Silicon photonics: a bright future? , 2009 .

[26]  Wei Du,et al.  An optically pumped 2.5 μm GeSn laser on Si operating at 110 K , 2016 .

[27]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[28]  Donguk Nam,et al.  Theoretical Modeling for the Interaction of Tin Alloying With N-Type Doping and Tensile Strain for GeSn Lasers , 2016, IEEE Electron Device Letters.

[29]  M. Myronov,et al.  Temperature-Dependent Photoluminescence Characteristics of GeSn Epitaxial Layers , 2016, 1609.00542.

[30]  Donguk Nam,et al.  Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics. , 2015, Optics express.

[31]  C. Schulte-Braucks,et al.  Optically Pumped GeSn Microdisk Lasers on Si , 2016 .

[32]  G. Capellini,et al.  Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. , 2014, Optics express.