Underlying principles of visual shape selectivity in posterior inferotemporal cortex

Object perception depends on shape processing in the ventral visual pathway, which in monkeys culminates in inferotemporal cortex (IT). Here we provide a description of fundamental quantitative principles governing neural selectivity for complex shape in IT. By measuring responses to large, parametric sets of two-dimensional (2D) silhouette shapes, we found that neurons in posterior IT (Brodmann's areas TEO and posterior TE) integrate information about multiple contour elements (straight and curved edge fragments of the type represented in lower-level areas) using both linear and nonlinear mechanisms. This results in complex, distributed response patterns that cannot be characterized solely in terms of example stimuli. We explained these response patterns with tuning functions in multidimensional shape space and accurately predicted neural responses to the widely varying shapes in our stimulus set. Integration of contour element information in earlier stages of IT represents an important step in the transformation from low-level shape signals to complex object representation.

[1]  R. Vogels,et al.  Spatial sensitivity of macaque inferior temporal neurons , 2000, The Journal of comparative neurology.

[2]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[3]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[4]  U. Polat,et al.  Collinear stimuli regulate visual responses depending on cell's contrast threshold , 1998, Nature.

[5]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[6]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[7]  R Vogels,et al.  Effects of surface cues on macaque inferior temporal cortical responses. , 2003, Cerebral cortex.

[8]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[9]  D. Ringach,et al.  On the classification of simple and complex cells , 2002, Vision Research.

[10]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[11]  C R Olson,et al.  Object-centered direction selectivity in the macaque supplementary eye field , 1995, Science.

[12]  M. Young,et al.  Sparse population coding of faces in the inferotemporal cortex. , 1992, Science.

[13]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[14]  J M Wolfe,et al.  Curvature is a Basic Feature for Visual Search Tasks , 1992, Perception.

[15]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[16]  C. Gross,et al.  Neural ensemble coding in inferior temporal cortex. , 1994, Journal of neurophysiology.

[17]  R. Desimone,et al.  Parallel neuronal mechanisms for short-term memory. , 1994, Science.

[18]  Donald D. Hoffman,et al.  Parts of recognition , 1984, Cognition.

[19]  Nathan Intrator,et al.  Towards structural systematicity in distributed, statically bound visual representations , 2003, Cogn. Sci..

[20]  R Vogels,et al.  Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Y. Miyashita,et al.  Neural organization for the long-term memory of paired associates , 1991, Nature.

[22]  Bartlett W. Mel,et al.  Minimizing Binding Errors Using Learned Conjunctive Features , 2000, Neural Computation.

[23]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[24]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[25]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[26]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[27]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[28]  M. Behrmann,et al.  Impact of learning on representation of parts and wholes in monkey inferotemporal cortex , 2002, Nature Neuroscience.

[29]  I. Fujita,et al.  Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex , 2000, Nature Neuroscience.

[30]  S. Ullman Three-dimensional object recognition based on the combination of views , 1998, Cognition.

[31]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[32]  N. Sigala,et al.  Visual categorization shapes feature selectivity in the primate temporal cortex , 2002, Nature.

[33]  H. Wilson,et al.  Concentric orientation summation in human form vision , 1997, Vision Research.

[34]  Benjamin B. Kimia,et al.  On the role of medial geometry in human vision , 2003, Journal of Physiology-Paris.

[35]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[36]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[37]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[38]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[39]  J. Maunsell,et al.  Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. , 2003, Journal of neurophysiology.

[40]  Michael Leyton,et al.  A generative theory of shape , 2004, Proceedings Shape Modeling Applications, 2004..

[41]  C. Connor,et al.  Population coding of shape in area V4 , 2002, Nature Neuroscience.

[42]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[43]  A. Treves,et al.  The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex , 1997, Experimental Brain Research.

[44]  R. Desimone,et al.  Shape recognition and inferior temporal neurons. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Marr,et al.  Representation and recognition of the spatial organization of three-dimensional shapes , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[46]  Minami Ito,et al.  Columns for visual features of objects in monkey inferotemporal cortex , 1992, Nature.

[47]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[48]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.