A multi-objective bi-level location planning problem for stone industrial parks

[1]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[2]  J. Cruz,et al.  On the Stackelberg strategy in nonzero-sum games , 1973 .

[3]  R. Jagannathan,et al.  Chance-Constrained Programming with Joint Constraints , 1974, Oper. Res..

[4]  François V. Louveaux,et al.  A Dual-Based Procedure for Stochastic Facility Location , 1992, Oper. Res..

[5]  Young-Jou Lai,et al.  Hierarchical optimization: A satisfactory solution , 1996, Fuzzy Sets Syst..

[6]  M. Sakawa,et al.  Interactive fuzzy programming for multilevel linear programming problems , 1998 .

[7]  Francisco Barahona,et al.  Plant location with minimum inventory , 1998, Math. Program..

[8]  M. Mazumdar,et al.  Statistical analysis of electric power production costs , 2000 .

[9]  Mikael Rönnqvist,et al.  An exact method for the two-echelon, single-source, capacitated facility location problem , 2000, Eur. J. Oper. Res..

[10]  E. Stanley Lee,et al.  Fuzzy multiple level programming , 2001, Appl. Math. Comput..

[11]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for two-level linear and linear fractional production and assignment problems: A case study , 2001, Eur. J. Oper. Res..

[12]  E. Stanley Lee,et al.  Fuzzy and Multi-Level Decision Making , 2001 .

[13]  M. Mazumdar,et al.  Monte Carlo Computation of Power Generation Production Costs under Operating Constraints , 2001, IEEE Power Engineering Review.

[14]  M. Sakawa,et al.  Interactive Fuzzy Programming Using Partial Information about Preference for Multiobjective Two-Level Linear Fractional Programming Problems , 2002 .

[15]  Siddhartha S. Syam A model and methodologies for the location problem with logistical components , 2002, Comput. Oper. Res..

[16]  Ichiro Nishizaki,et al.  Interactive fuzzy programming for decentralized two-level linear programming problems , 2002, Fuzzy Sets Syst..

[17]  Mitsuo Gen,et al.  The balanced allocation of customers to multiple distribution centers in the supply chain network: a genetic algorithm approach , 2002 .

[18]  Shabbir Ahmed,et al.  A Multi-Stage Stochastic Integer Programming Approach for Capacity Expansion under Uncertainty , 2003, J. Glob. Optim..

[19]  Luigi Fortuna,et al.  Chaotic sequences to improve the performance of evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[20]  T. Santoso A stochastic programming approach for supply chain network design under uncertainty , 2004 .

[21]  Fushuan Wen,et al.  A chance constrained programming approach to transmission system expansion planning , 2005 .

[22]  V. Kachitvichyanukul,et al.  A NON-HOMOGENOUS PARTICLE SWARM OPTIMIZATION WITH MULTIPLE SOCIAL STRUCTURES , 2005 .

[23]  Guo H. Huang,et al.  An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty , 2005, Eur. J. Oper. Res..

[24]  Fatma Tiryaki,et al.  Interactive compensatory fuzzy programming for decentralized multi-level linear programming (DMLLP) problems , 2006, Fuzzy Sets Syst..

[25]  Fernando A. Branco,et al.  RECYCLING OF STONE SLURRY IN INDUSTRIAL ACTIVITIES: APPLICATION TO CONCRETE MIXTURES , 2007 .

[26]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[27]  S. R. Arora,et al.  Interactive fuzzy goal programming approach for bilevel programming problem , 2009, Eur. J. Oper. Res..

[28]  Ziad Mimi,et al.  Environmental management of the stone cutting industry. , 2009, Journal of environmental management.

[29]  Voratas Kachitvichyanukul,et al.  A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery , 2009, Comput. Oper. Res..

[30]  Kalyanmoy Deb,et al.  Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm , 2009 .

[31]  Kalyanmoy Deb,et al.  Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms , 2009, EMO.

[32]  Guangquan Zhang,et al.  A ${\bm \lambda}$-Cut and Goal-Programming-Based Algorithm for Fuzzy-Linear Multiple-Objective Bilevel Optimization , 2010, IEEE Transactions on Fuzzy Systems.

[33]  Kalyanmoy Deb,et al.  An Efficient and Accurate Solution Methodology for Bilevel Multi-Objective Programming Problems Using a Hybrid Evolutionary-Local-Search Algorithm , 2010, Evolutionary Computation.

[34]  Jiamin Wang,et al.  The probabilistic gradual covering location problem on a network with discrete random demand weights , 2011, Comput. Oper. Res..

[35]  Jiuping Xu,et al.  Random-Like Multiple Objective Decision Making , 2011 .

[36]  Jiuping Xu,et al.  A Stone Resource Assignment Model under the Fuzzy Environment , 2012 .

[37]  Vladimir Marianov,et al.  A branch-and-cluster coordination scheme for selecting prison facility sites under uncertainty , 2012, Comput. Oper. Res..

[38]  G. Laporte,et al.  Optimal location and capability of oil-spill response facilities for the south coast of Newfoundland , 2013 .

[39]  Boting Yang,et al.  Water resources management under multi-parameter interactions: A factorial multi-stage stochastic programming approach , 2013 .

[40]  Zhong Chen,et al.  Solving high dimensional bilevel multiobjective programming problem using a hybrid particle swarm optimization algorithm with crossover operator , 2013, Knowl. Based Syst..

[41]  Roberto Rossi,et al.  Piecewise linear approximations for the static-dynamic uncertainty strategy in stochastic lot-sizing , 2013, ArXiv.

[42]  Zhongping Wan,et al.  A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems , 2013, Swarm Evol. Comput..

[43]  Jiuping Xu,et al.  Bilevel Optimization of Regional Water Resources Allocation Problem under Fuzzy Random Environment , 2013 .

[44]  I Gede Agus Widyadana,et al.  A production model for deteriorating items with stochastic preventive maintenance time and rework process with FIFO rule , 2013 .

[45]  Xiaobo Zhao,et al.  A delay-in-payment contract for Pareto improvement of a supply chain with stochastic demand , 2014 .

[46]  Xiao Lei,et al.  Applying Multiobjective Bilevel Optimization under Fuzzy Random Environment to Traffic Assignment Problem: Case Study of a Large-Scale Construction Project , 2014 .

[47]  David F. Pyke,et al.  Dynamic pricing with uncertain production cost: An alternating-move approach , 2014, Eur. J. Oper. Res..

[48]  İbrahim Akgün,et al.  Risk based facility location by using fault tree analysis in disaster management , 2015 .