Quantum walk speedup of backtracking algorithms

We describe a general method to obtain quantum speedups of classical algorithms which are based on the technique of backtracking, a standard approach for solving constraint satisfaction problems (CSPs). Backtracking algorithms explore a tree whose vertices are partial solutions to a CSP in an attempt to find a complete solution. Assume there is a classical backtracking algorithm which finds a solution to a CSP on n variables, or outputs that none exists, and whose corresponding tree contains T vertices, each vertex corresponding to a test of a partial solution. Then we show that there is a bounded-error quantum algorithm which completes the same task using O(sqrt(T) n^(3/2) log n) tests. In particular, this quantum algorithm can be used to speed up the DPLL algorithm, which is the basis of many of the most efficient SAT solvers used in practice. The quantum algorithm is based on the use of a quantum walk algorithm of Belovs to search in the backtracking tree. We also discuss how, for certain distributions on the inputs, the algorithm can lead to an exponential reduction in expected runtime.

[1]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[2]  Peter van Beek,et al.  Backtracking Search Algorithms , 2006, Handbook of Constraint Programming.

[3]  Tad Hogg,et al.  The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..

[4]  Niklas Sörensson,et al.  An Extensible SAT-solver , 2003, SAT.

[5]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  R. Monasson,et al.  Statistical physics analysis of the computational complexity of solving random satisfiability problems using backtrack algorithms , 2000, cond-mat/0012191.

[7]  Christian Bessiere,et al.  Statistical Regimes Across Constrainedness Regions , 2004, Constraints.

[8]  Frédéric Magniez,et al.  On the Hitting Times of Quantum Versus Random Walks , 2008, Algorithmica.

[9]  Simona Cocco,et al.  Restarts and Exponential Acceleration of the Davis–Putnam–Loveland–Logemann Algorithm: A Large Deviation Analysis of the Generalized Unit Clause Heuristic for Random 3-SAT , 2005 .

[10]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[11]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[12]  Irina Rish,et al.  Statistical Analysis of Backtracking on Inconsistent CSPs , 1997, CP.

[13]  D. Knuth Estimating the efficiency of backtrack programs. , 1974 .

[14]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[15]  Alán Aspuru-Guzik,et al.  Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems , 2015, New Journal of Physics.

[16]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER , 2010 .

[17]  Paul Walton Purdom,et al.  Backtracking and random constraint satisfaction , 1997, Annals of Mathematics and Artificial Intelligence.

[18]  Ola Angelsmark,et al.  Finite Domain Constraint Satisfaction Using Quantum Computation , 2002, MFCS.

[19]  Cristopher Moore,et al.  How Much Backtracking Does It Take to Color Random Graphs? Rigorous Results on Heavy Tails , 2004, CP.

[20]  Chris Cade,et al.  Time and space efficient quantum algorithms for detecting cycles and testing bipartiteness , 2018, Quantum Inf. Comput..

[21]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[22]  Vladik Kreinovich,et al.  On quantum versions of record-breaking algorithms for SAT , 2005, SIGA.

[23]  Andris Ambainis,et al.  Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.

[24]  Avatar Tulsi,et al.  Faster quantum-walk algorithm for the two-dimensional spatial search , 2008, 0801.0497.

[25]  Maris Ozols,et al.  Quantum Walks Can Find a Marked Element on Any Graph , 2010, Algorithmica.

[26]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[27]  S Cocco,et al.  Trajectories in phase diagrams, growth processes, and computational complexity: how search algorithms solve the 3-satisfiability problem. , 2001, Physical review letters.

[28]  Guoming Wang Quantum algorithms for approximating the effective resistances of electrical networks , 2013, ArXiv.

[29]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[30]  Lov K. Grover,et al.  Nested quantum search and structured problems , 1998, quant-ph/9806078.

[31]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[32]  Martin Fürer Solving NP-Complete Problems with Quantum Search , 2008, LATIN.

[33]  J. A. Robinson,et al.  Review: Martin Davis, George Logemann, Donald Loveland, A Machine Program for Theorem-Proving , 1967 .

[34]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[35]  Toby Walsh,et al.  Randomness and Structure , 2006, Handbook of Constraint Programming.

[36]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[37]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[38]  Eugene C. Freuder,et al.  Constraint Satisfaction: An Emerging Paradigm , 2006, Handbook of Constraint Programming.

[39]  Larry J. Stockmeyer,et al.  On Approximation Algorithms for #P , 1985, SIAM J. Comput..

[40]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[41]  Troy Lee,et al.  Quantum Query Complexity of State Conversion , 2010, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[42]  Aleksandrs Belovs,et al.  Quantum Walks and Electric Networks , 2013, 1302.3143.

[43]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[44]  Inês Lynce,et al.  An Overview of Backtrack Search Satisfiability Algorithms , 2003, Annals of Mathematics and Artificial Intelligence.

[45]  Phong Q. Nguyen,et al.  BKZ 2.0: Better Lattice Security Estimates , 2011, ASIACRYPT.

[46]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[47]  Guoming Wang,et al.  Efficient quantum algorithms for analyzing large sparse electrical networks , 2013, Quantum Inf. Comput..

[48]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[49]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[50]  David Pointcheval,et al.  The Whole is Less Than the Sum of Its Parts: Constructing More Efficient Lattice-Based AKEs , 2016, SCN.

[51]  Paul Walton Purdom,et al.  An Average Time Analysis of Backtracking , 1981, SIAM J. Comput..

[52]  Michael E. Saks,et al.  The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..

[53]  Ryan Williams Improving Exhaustive Search Implies Superpolynomial Lower Bounds , 2013, SIAM J. Comput..

[54]  Prabhakar Raghavan,et al.  The electrical resistance of a graph captures its commute and cover times , 2005, computational complexity.

[55]  R. Monasson,et al.  Exponentially hard problems are sometimes polynomial, a large deviation analysis of search algorithms for the random satisfiability problem, and its application to stop-and-restart resolutions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[57]  Ashley Montanaro,et al.  Quantum Search with Advice , 2009, TQC.

[58]  Erdem Alkim,et al.  Post-quantum Key Exchange - A New Hope , 2016, USENIX Security Symposium.

[59]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[60]  Stacey Jeffery,et al.  Time-Efficient Quantum Walks for 3-Distinctness , 2013, ICALP.