Mechanical and tribological properties of the tricalcium phosphate - magnesium oxide composites.

[1]  F. B. Ayed,et al.  Sintering of the Tricalcium Phosphate-Titania-Magnesium Fluoride Composites , 2018 .

[2]  F. B. Ayed,et al.  Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride. , 2016, Journal of the mechanical behavior of biomedical materials.

[3]  V. Sglavo,et al.  Effect of Mg(2+) doping on beta-alpha phase transition in tricalcium phosphate (TCP) bioceramics. , 2016, Acta biomaterialia.

[4]  Ibticem Ayadi,et al.  Sintering and the mechanical properties of the tricalcium phosphate-titania composites. , 2015, Journal of the mechanical behavior of biomedical materials.

[5]  M. Fredel,et al.  Synthesis and Characterization of Calcium Phosphate Compounds with Strontium and Magnesium Ionic Substitutions , 2015 .

[6]  J. Bouaziz,et al.  The effect of adding magnesium oxide on the mechanical properties of the tricalcium phosphate-zirconia composites , 2015 .

[7]  Y. Chevalier Essais dynamiques sur composites - Caractérisation aux basses fréquences , 2002, Plastiques et composites.

[8]  Majid R. Ayatollahi,et al.  Effect of sintering temperature on mechanical and tribological properties of hydroxyapatite measured by nanoindentation and nanoscratch experiments , 2014 .

[9]  J. Bouaziz,et al.  Sintering and mechanical properties of the alumina-tricalcium phosphate-titania composites. , 2014, Materials science & engineering. C, Materials for biological applications.

[10]  J. Bouaziz,et al.  Influence of the sintering temperature on Young's modulus and the shear modulus of tricalcium phosphate – fluorapatite composites evaluated by ultrasound techniques , 2013 .

[11]  A. Mukhopadhyay,et al.  Mechanical Properties of Enamel Nanocomposite , 2013 .

[12]  J. Bouaziz,et al.  Mechanical Properties of Biomaterials Based on Calcium Phosphates and Bioinert Oxides for Applications in Biomedicine , 2013 .

[13]  C. Melandri,et al.  Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments. , 2013, Journal of the mechanical behavior of biomedical materials.

[14]  M. Daliri,et al.  Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method , 2011 .

[15]  F. B. Ayed Elaboration and Characterization of Calcium Phosphate Biomaterial for Biomedical Applications , 2011 .

[16]  Yeau-Ren Jeng,et al.  Human enamel rod presents anisotropic nanotribological properties. , 2011, Journal of the mechanical behavior of biomedical materials.

[17]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[18]  Jung Hyeun Kim,et al.  Sintering characteristics of TiO2 nanoparticles by microwave processing , 2010 .

[19]  M. Bahrololoom,et al.  Optimizations of wear resistance and toughness of hydroxyapatite nickel free stainless steel new bio-composites for using in total joint replacement , 2010 .

[20]  J. Bouaziz,et al.  Effect of fluorapatite additive on densification and mechanical properties of tricalcium phosphate. , 2010, Journal of the mechanical behavior of biomedical materials.

[21]  J. Bouaziz,et al.  Sintering and mechanical properties of tricalcium phosphate–fluorapatite composites , 2009 .

[22]  S. K. Sadrnezhaad,et al.  Sintering of titania nanoceramic: Densification and grain growth , 2009 .

[23]  A. Bandyopadhyay,et al.  Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants , 2008, Journal of materials science. Materials in medicine.

[24]  J. Ferreira,et al.  Ionic Substitutions in Biphasic Hydroxyapatite and β‐Tricalcium Phosphate Mixtures: Structural Analysis by Rietveld Refinement , 2007 .

[25]  Zhou Zhongrong,et al.  Friction and wear behavior of human teeth under various wear conditions , 2007 .

[26]  W. Acchar,et al.  Phase Transition Behaviour of Tricalcium Phosphate (TCP) Doped with MgO and TiO2 as Additives , 2006 .

[27]  K. Bouzouita,et al.  Frittage du phosphate tricalcique , 2006 .

[28]  D. Buser,et al.  Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. , 2006, Clinical oral implants research.

[29]  J. K. Lee,et al.  Densification and Strengthening of Tricalcium Phosphate/Titania Composite by Hot Pressing , 2006 .

[30]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[31]  P. Buma,et al.  Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients. , 2005, Biomaterials.

[32]  M. Vallet‐Regí,et al.  Calcium phosphates as substitution of bone tissues , 2004 .

[33]  D. Bernache-Assollant,et al.  Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate , 2003 .

[34]  Tatsuhiko Aizawa,et al.  Tribological properties of magnesium composite alloy with in-situ synthesized Mg2Si dispersoids , 2003 .

[35]  M. Kalin,et al.  Effect of counterface roughness on abrasive wear of hydroxyapatite , 2002 .

[36]  J. Knowles,et al.  Development of soluble glasses for biomedical use Part II: The biological response of human osteoblast cell lines to phosphate-based soluble glasses , 2000, Journal of materials science. Materials in medicine.

[37]  M. H. Fernandes,et al.  Influence of the CaO/MgO ratio on the structure of phase-separated glasses: a solid state 29Si and 31P MAS NMR study , 2000 .

[38]  Qi-Zhi Wang,et al.  Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks , 1999 .

[39]  J. Voegel,et al.  Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts. , 1998, Journal of biomedical materials research.

[40]  P. Boch,et al.  Sintering of TCP-TiO2 biocomposites: influence of secondary phases. , 1998, Biomaterials.

[41]  M. Harmer,et al.  Mechanism for the Role of Magnesia in the Sintering of Alumina Containing Small Amounts of a liquid Phase , 1989 .

[42]  K. Gahr,et al.  Microstructure and Wear of Materials , 1987 .

[43]  A. Ravaglioli,et al.  Bioceramics , 2022, An Introduction to Biomaterials Science and Engineering.