Corrosion and corrosion-fatigue behavior of magnesium metal matrix composites for bio-implant applications: A review

[1]  M. Kasaeian-Naeini,et al.  Microstructure, mechanical properties and fracture toughness of ECAPed magnesium matrix composite reinforced with hydroxyapatite ceramic particulates for bioabsorbable implants , 2023, Ceramics International.

[2]  A. Asgari,et al.  Microstructure and surface integrity of machined AZ91 magnesium alloy , 2022, Journal of Materials Research and Technology.

[3]  Manoj Kumar Gupta,et al.  Assessing Mg/Si3N4 biodegradable nanocomposites for osteosynthesis implants with a focus on microstructural, mechanical, in vitro corrosion and bioactivity aspects , 2022, Journal of Materials Research and Technology.

[4]  Jiahao Chen,et al.  Influence of Surface Roughness on Biodegradability and Cytocompatibility of High-Purity Magnesium , 2022, Materials.

[5]  M. Gupta,et al.  In Vitro Electrochemical Corrosion Assessment of Magnesium Nanocomposites Reinforced with Samarium(III) Oxide and Silicon Dioxide Nanoparticles , 2022, Journal of Composites Science.

[6]  Yunpeng Hu,et al.  Review of the Effect of Surface Coating Modification on Magnesium Alloy Biocompatibility , 2022, Materials.

[7]  Gurmeet Singh Arora,et al.  Critical review of Mg matrix composite for bio-implants through powder metallurgy , 2022, Materials Today: Proceedings.

[8]  Weiqi Wang,et al.  Effect of multi-pass friction stir processing on the microstructure evolution and corrosion behavior of ZrO2/AZ31 magnesium matrix composite , 2022, Journal of Materials Research and Technology.

[9]  Xiaoguang Huang,et al.  Experiment and simulation of high‐cycle corrosion fatigue damage evolution and corrosion pit tolerance analysis of crack nucleation , 2022, Fatigue & Fracture of Engineering Materials & Structures.

[10]  Jun-yi Wu,et al.  Use of Recycling-Reflection Color-Purity Enhancement Film to Improve Color Purity of Full-Color Micro-LEDs , 2022, Nanoscale Research Letters.

[11]  A. Vinogradov,et al.  On the Corrosion Fatigue of Magnesium Alloys Aimed at Biomedical Applications: New Insights from the Influence of Testing Frequency and Surface Modification of the Alloy ZK60 , 2022, Materials.

[12]  C. Wen,et al.  Microstructure, mechanical and corrosion properties of hot-pressed graphene nanoplatelets-reinforced Mg matrix nanocomposites for biomedical applications , 2021 .

[13]  M. Kasaeian-Naeini,et al.  Severe plastic deformation (SPD) of biodegradable magnesium alloys and composites: A review of developments and prospects , 2021, Journal of Magnesium and Alloys.

[14]  F. Berto,et al.  Functionalized carbon nanotube-encapsulated magnesium-based nanocomposites with outstanding mechanical and biological properties as load-bearing bone implants , 2021, Materials & Design.

[15]  S. Sharif,et al.  Overview of magnesium-ceramic composites: Mechanical, corrosion and biological properties , 2021, Journal of Materials Research and Technology.

[16]  S. Bala,et al.  Magnesium based implants for functional bone tissue regeneration – A review , 2021, Journal of Magnesium and Alloys.

[17]  A. Ercetin,et al.  Microstructure, Mechanical, and Corrosion Behavior of Al2O3 Reinforced Mg2Zn Matrix Magnesium Composites , 2021, Materials.

[18]  Wenbo Jiang,et al.  Additively manufactured biodegradable porous magnesium implants for elimination of implant-related infections: An in vitro and in vivo study , 2021, Bioactive materials.

[19]  Manisha Behera,et al.  Additively Manufactured Magnesium-Based Bio-Implants and their Challenges , 2021, Transactions of the Indian National Academy of Engineering.

[20]  C. Wen,et al.  Mechanical and corrosion properties of graphene nanoplatelet–reinforced Mg–Zr and Mg–Zr–Zn matrix nanocomposites for biomedical applications , 2021 .

[21]  H. Jafarian,et al.  The effect of addition of hardystonite on the strength, ductility and corrosion resistance of WE43 magnesium alloy , 2021, Journal of Materials Research and Technology.

[22]  M. Sedighi,et al.  In vitro corrosion-fatigue behavior of biodegradable Mg/HA composite in simulated body fluid , 2021 .

[23]  Zhen Liu,et al.  Fabrication and characterization of friction stir–processed Mg-Zn-Ca biomaterials strengthened with MgO particles , 2021, The International Journal of Advanced Manufacturing Technology.

[24]  M. Gupta,et al.  In vitro degradation, haemolysis and cytotoxicity study of Mg‐0.4Ce/ZnO2 nanocomposites , 2021, IET nanobiotechnology.

[25]  S. Hiromoto,et al.  Effects of Incorporating Β-Tricalcium Phosphate with Reaction Sintering into Mg-Based Composites on Degradation and Mechanical Integrity , 2021, Metals.

[26]  D. Lahiri,et al.  The influence of bioactive hydroxyapatite shape and size on the mechanical and biodegradation behaviour of magnesium based composite , 2020 .

[27]  S. Bagherifard,et al.  Effect of warm shot peening treatments on surface properties and corrosion behavior of AZ31 magnesium alloy , 2020 .

[28]  M. Gupta,et al.  Development of rare-earth oxide reinforced magnesium nanocomposites for orthopaedic applications: A mechanical/immersion/biocompatibility perspective. , 2020, Journal of the mechanical behavior of biomedical materials.

[29]  C. Shuai,et al.  Dual alloying improves the corrosion resistance of biodegradable Mg alloys prepared by selective laser melting , 2020 .

[30]  Y. Tsutsumi,et al.  Mechanical Properties and Corrosion Resistance of Magnesium–Hydroxyapatite Composites Fabricated by Spark Plasma Sintering , 2020, Metals.

[31]  S. Dutta,et al.  Recent Developments in Magnesium Metal-Matrix Composites for Biomedical Applications: A Review. , 2020, ACS biomaterials science & engineering.

[32]  Jiaqi Hu,et al.  Influence of Twinning Texture on the Corrosion Fatigue Behavior of Extruded Magnesium Alloys , 2020, Acta Metallurgica Sinica (English Letters).

[33]  D. Bizari,et al.  Investigation of mechanical properties and biocorrosion behavior of in situ and ex situ Mg composite for orthopedic implants. , 2020, Materials science & engineering. C, Materials for biological applications.

[34]  J. Teng,et al.  Effects of hydroxyapatite content on mechanical properties and in-vitro corrosion behavior of ZK60/HA composites , 2020, International Journal of Materials Research.

[35]  R. B. Soares,et al.  Corrosion Behavior in Hank's Solution of a Magnesium–Hydroxyapatite Composite Processed by High‐Pressure Torsion , 2020, Advanced Engineering Materials.

[36]  S. Ramakrishna,et al.  Graphene Family Nanomaterial Reinforced Magnesium-Based Matrix Composites for Biomedical Application: A Comprehensive Review , 2020, Metals.

[37]  J. Teng,et al.  Corrosion-wear behavior of a biocompatible magnesium matrix composite in simulated body fluid , 2020, Friction.

[38]  Deepak Kumar,et al.  Bio-mechanical characterization of Mg-composite implant developed by spark plasma sintering technique , 2020 .

[39]  C. Wen,et al.  Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials , 2020 .

[40]  E. Aghion,et al.  Stress Corrosion and Corrosion Fatigue of Biodegradable Mg-Zn-Nd-Y-Zr Alloy in In-Vitro Conditions , 2020, Metals.

[41]  A. Yetisen,et al.  Surface modification and cytotoxicity of Mg-based bio-alloys: An overview of recent advances , 2020 .

[42]  H. Ghayour,et al.  Microstructure, mechanical properties, and in-vitro biocompatibility of nano- NiTi reinforced Mg–3Zn-0.5Ag alloy: Prepared by mechanical alloying for implant applications , 2020, Composites Part B: Engineering.

[43]  B. Wang,et al.  Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites , 2020 .

[44]  Jin Su,et al.  Biodegradable magnesium-matrix composites: A review , 2020, International Journal of Minerals, Metallurgy and Materials.

[45]  R. Radha,et al.  Mechanical and corrosion behaviour of hydroxyapatite reinforced Mg-Sn alloy composite by squeeze casting for biomedical applications , 2020 .

[46]  A. Nieto,et al.  Effect of Surface Roughness on Pitting Corrosion of AZ31 Mg Alloy , 2020, Metals.

[47]  M. Razavi,et al.  Effect of hydroxyapatite (HA) nanoparticles shape on biodegradation of Mg/HA nanocomposites processed by high shear solidification/equal channel angular extrusion route , 2020 .

[48]  C. Shuai,et al.  TiO2 induced in situ reaction in graphene oxide reinforced AZ61 biocomposites to enhance the interfacial bonding. , 2020, ACS applied materials & interfaces.

[49]  H. Bakhsheshi‐Rad,et al.  Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties , 2020 .

[50]  Sameehan S. Joshi,et al.  In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. , 2020, Materials science & engineering. C, Materials for biological applications.

[51]  C. Wen,et al.  Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications , 2020 .

[52]  Liguo Wang,et al.  Corrosion fatigue of the extruded Mg–Zn–Y–Nd alloy in simulated body fluid , 2020 .

[53]  M. Gupta,et al.  Strength retention, corrosion control and biocompatibility of Mg-Zn-Si/HA nanocomposites. , 2020, Journal of The Mechanical Behavior of Biomedical Materials.

[54]  G. Faraji,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg-HA bionanocomposites fabricated by a novel severe plastic deformation process , 2020 .

[55]  Sripathi Dev Sharma Kopparthy,et al.  A study on the effect of low-cost eggshell reinforcement on the immersion, damping and mechanical properties of magnesium–zinc alloy , 2020 .

[56]  L. An,et al.  High performance carbon nanotube-reinforced magnesium nanocomposite , 2020 .

[57]  M. Gupta,et al.  Magnesium nanocomposites reinforced with rare earth element nanoparticles: nanoindentation-driven response , 2020 .

[58]  F. Nejatidanesh,et al.  The effect of the nano- bioglass reinforcement on magnesium based composite. , 2019, Journal of the mechanical behavior of biomedical materials.

[59]  Yufeng Zheng,et al.  A numerical corrosion-fatigue model for biodegradable Mg alloy stents. , 2019, Acta biomaterialia.

[60]  T. Lei,et al.  In vitro and in vivo anti-corrosion properties and bio-compatibility of 5β-TCP/Mg-3Zn scaffold coated with dopamine-gelatin composite , 2019, Surface and Coatings Technology.

[61]  C. Wen,et al.  Magnesium matrix nanocomposites for orthopedic applications: A review from mechanical, corrosion, and biological perspectives. , 2019, Acta biomaterialia.

[62]  P. Roy,et al.  Mg-3Zn/HA Biodegradable Composites Synthesized via Spark Plasma Sintering for Temporary Orthopedic Implants , 2019, Journal of Materials Engineering and Performance.

[63]  Zhenxin Zheng,et al.  Microstructure and Properties of Nano-Hydroxyapatite Reinforced WE43 Alloy Fabricated by Friction Stir Processing , 2019, Materials.

[64]  M. Govindaraju,et al.  Investigations on the corrosion behaviour and biocompatibility of magnesium alloy surface composites AZ91D-ZrO2 fabricated by friction stir processing , 2019, Transactions of the IMF.

[65]  R. B. Soares,et al.  Magnesium-Based Bioactive Composites Processed at Room Temperature , 2019, Materials.

[66]  N. Al-Aqeeli,et al.  Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties , 2019, Journal of Alloys and Compounds.

[67]  K. Pramod,et al.  Advanced biomedical applications of carbon nanotube. , 2019, Materials science & engineering. C, Materials for biological applications.

[68]  V. R.,et al.  Synthesis and Characterization of Magnesium Alloy Surface Composite (AZ91D - SiO2) by Friction Stir Processing for Bioimplants , 2019, Silicon.

[69]  G. Sakthinathan,et al.  Experimental comparison of corrosion behavior of pure magnesium, iron coated magnesium and hydroxyapatite coated magnesium in Hanks Basic salt solution for cardiovascular application , 2019, Materials Research Express.

[70]  Wen-xian Wang,et al.  Microstructure, mechanical, corrosion properties and cytotoxicity of beta‑calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering. , 2019, Materials science & engineering. C, Materials for biological applications.

[71]  B. Sunil,et al.  Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: studies on mechanical behaviour and corrosion resistance , 2019, Bulletin of Materials Science.

[72]  Hong Wu,et al.  In vitro degradation behavior and cytocompatibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications , 2019, Journal of Alloys and Compounds.

[73]  Wen-xian Wang,et al.  Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering , 2019, Materials Characterization.

[74]  B. Wang,et al.  3D honeycomb nanostructure-encapsulated magnesium alloys with superior corrosion resistance and mechanical properties , 2019, Composites Part B: Engineering.

[75]  Houman Kazemzadeh,et al.  Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process , 2019, Materials Chemistry and Physics.

[76]  M. Krishna,et al.  Magnesium matrix composites for biomedical applications: A review , 2019, Journal of Magnesium and Alloys.

[77]  E. Han,et al.  Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy , 2019, International Journal of Fatigue.

[78]  S. K. Shaha,et al.  Improving Corrosion and Corrosion-Fatigue Resistance of AZ31B Cast Mg Alloy Using Combined Cold Spray and Top Coatings , 2018, Coatings.

[79]  Q. Yuan,et al.  Effects of solidification cooling rate on the corrosion resistance of a biodegradable β-TCP/Mg-Zn-Ca composite. , 2018, Bioelectrochemistry.

[80]  Hong Wu,et al.  Reduced inflammatory response by incorporating magnesium into porous TiO2 coating on titanium substrate. , 2018, Colloids and surfaces. B, Biointerfaces.

[81]  R. Oriňaková,et al.  Recent advancements in Fe-based biodegradable materials for bone repair , 2018, Journal of Materials Science.

[82]  Dongdong Liu,et al.  Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications , 2018, Materials Characterization.

[83]  B. S. Pabla,et al.  Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering , 2018, Materials and Manufacturing Processes.

[84]  Sunpreet Singh,et al.  Synthesis, Characterization, Corrosion Resistance and In-Vitro Bioactivity Behavior of Biodegradable Mg–Zn–Mn–(Si–HA) Composite for Orthopaedic Applications , 2018, Materials.

[85]  S. Wang,et al.  Study on Porous Mg-Zn-Zr ZK61 Alloys Produced by Laser Additive Manufacturing , 2018 .

[86]  Jiye Cai,et al.  The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications , 2018, Bioinorganic chemistry and applications.

[87]  Robert A. Ainsworth,et al.  Corrosion-fatigue: a review of damage tolerance models , 2018 .

[88]  A. Sorour,et al.  Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid , 2018, Metals and Materials International.

[89]  Hongxiang Li,et al.  Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys , 2018, International Journal of Minerals, Metallurgy, and Materials.

[90]  A. Sorour,et al.  Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid , 2018, Journal of Materials Engineering and Performance.

[91]  Jason L Guo,et al.  Material Processing and Design of Biodegradable Metal Matrix Composites for Biomedical Applications , 2018, Annals of Biomedical Engineering.

[92]  M. Sedighi,et al.  Microstructural properties and mechanical behavior of magnesium/hydroxyapatite biocomposite under static and high cycle fatigue loading , 2018 .

[93]  Manoj Gupta,et al.  Magnesium-β-Tricalcium Phosphate Composites as a Potential Orthopedic Implant: A Mechanical/Damping/Immersion Perspective , 2018 .

[94]  M. Hasani,et al.  Nanodiamonds for In Vivo Applications. , 2018, Small.

[95]  F. V. D. van der Helm,et al.  Biodegradation and mechanical behavior of an advanced bioceramic-containing Mg matrix composite synthesized through in-situ solid-state oxidation. , 2018, Journal of the mechanical behavior of biomedical materials.

[96]  K. R. Ravi,et al.  Hydroxyapatite particle (HAp) reinforced biodegradable Mg-Zn-Ca metallic glass composite for bio-implant applications , 2018 .

[97]  Z. Y. Liu,et al.  Surface integrity and corrosion performance of biomedical magnesium-calcium alloy processed by hybrid dry cutting-finish burnishing. , 2018, Journal of the mechanical behavior of biomedical materials.

[98]  P. Roy,et al.  Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. , 2018, Journal of the mechanical behavior of biomedical materials.

[99]  M. Doble,et al.  Electrospun PCL/HA coated friction stir processed AZ31/HA composites for degradable implant applications , 2018 .

[100]  T. Webster,et al.  Effects of nanofeatures induced by severe shot peening (SSP) on mechanical, corrosion and cytocompatibility properties of magnesium alloy AZ31. , 2017, Acta biomaterialia.

[101]  H Weinans,et al.  Additively manufactured biodegradable porous magnesium. , 2017, Acta biomaterialia.

[102]  Shervin Eslami Harandi,et al.  Corrosion fatigue of a magnesium alloy under appropriate human physiological conditions for bio-implant applications , 2017 .

[103]  M. E. Turan,et al.  The effect of GNPs on wear and corrosion behaviors of pure magnesium , 2017 .

[104]  M. Oh,et al.  Effect of various shaped magnesium hydroxide particles on mechanical and biological properties of poly(lactic-co-glycolic acid) composites , 2017 .

[105]  F. Walther,et al.  Corrosion fatigue assessment of creep-resistant magnesium alloys DieMag422 and AE42 , 2017 .

[106]  S. K. Shaha,et al.  Effect of forging on the low cycle fatigue behavior of cast AZ31B Alloy , 2017 .

[107]  G. Ji,et al.  Biocompatible silica-based magnesium composites , 2017, Journal of Alloys and Compounds.

[108]  Jeremy Goldman,et al.  The Prospects of Zinc as a Structural Material for Biodegradable Implants—A Review Paper , 2017 .

[109]  E. Han,et al.  Recent progress in fatigue behavior of Mg alloys in air and aqueous media: A review , 2017 .

[110]  Jie Zhou,et al.  Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications. , 2017, Materials science & engineering. C, Materials for biological applications.

[111]  Sachiko Hiromoto,et al.  In Vitro Corrosion Properties of Mg Matrix In Situ Composites Fabricated by Spark Plasma Sintering , 2017 .

[112]  D. Sreekanth,et al.  Insight of magnesium alloys and composites for orthopedic implant applications – a review , 2017 .

[113]  R. K. Singh Raman,et al.  In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid. , 2017, Materials science & engineering. C, Materials for biological applications.

[114]  F. Pan,et al.  Corrosion behavior of magnesium-graphene composites in sodium chloride solutions , 2017 .

[115]  Changjun Chen,et al.  Effect of laser processing parameters on porosity, microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing , 2017 .

[116]  Song-Jeng Huang,et al.  Particle Size and Particle Percentage Effect of AZ61/SiCp Magnesium Matrix Micro- and Nano-Composites on Their Mechanical Properties Due to Extrusion and Subsequent Annealing , 2017 .

[117]  Y. Zhang,et al.  Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg-2Zn-0.5Sr alloy , 2017 .

[118]  Meysam Haghshenas,et al.  Mechanical characteristics of biodegradable magnesium matrix composites: A review , 2017 .

[119]  Jin-quan Xu,et al.  A phenomenological life evaluation method for corrosion fatigue , 2017 .

[120]  J. Jakubowicz,et al.  Influence of 45S5 Bioglass addition on microstructure and properties of ultrafine grained (Mg-4Y-5.5Dy-0.5Zr) alloy , 2017 .

[121]  Peter J. Murphy,et al.  Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness , 2017 .

[122]  Ali A. Roostaei,et al.  Multiaxial cyclic behaviour and fatigue modelling of AM30 Mg alloy extrusion , 2017 .

[123]  W. Haider,et al.  In vitro biodegradation, electrochemical corrosion evaluations and mechanical properties of an Mg/HA/TiO2 nanocomposite for biomedical applications , 2017 .

[124]  Jie Zhou,et al.  Fabrication of novel magnesium-matrix composites and their mechanical properties prior to and during in vitro degradation. , 2017, Journal of the mechanical behavior of biomedical materials.

[125]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[126]  H. Jahed,et al.  The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion , 2017 .

[127]  Changshun Ruan,et al.  Vital role of hydroxyapatite particle shape in regulating the porosity and mechanical properties of the sintered scaffolds , 2017 .

[128]  Yang Ke,et al.  Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability: A Review , 2016 .

[129]  James F Curtin,et al.  Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. , 2016, Materials science & engineering. C, Materials for biological applications.

[130]  J. L. Drury,et al.  Zirconia in biomedical applications , 2016, Expert review of medical devices.

[131]  Yufeng Zheng,et al.  Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. , 2016, Acta biomaterialia.

[132]  Wei Li,et al.  Characterization of biomedical hydroxyapatite/magnesium composites prepared by powder metallurgy assisted with microwave sintering , 2016 .

[133]  Ali A. Roostaei,et al.  Role of loading direction on cyclic behaviour characteristics of AM30 extrusion and its fatigue damage modelling , 2016 .

[134]  Yong Zhu,et al.  Mechanical and biological properties of bioglass/magnesium composites prepared via microwave sintering route , 2016 .

[135]  Yufeng Zheng,et al.  Magnesium-calcium/hydroxyapatite (Mg-Ca/HA) composites with enhanced bone differentiation properties for orthopedic applications , 2016 .

[136]  P. Liaw,et al.  Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment , 2016 .

[137]  A. Arnaout,et al.  Carbon Nanotubes in Biomedical Applications: Factors, Mechanisms, and Remedies of Toxicity. , 2016, Journal of medicinal chemistry.

[138]  Dayong Li,et al.  Improvement of the Biodegradation Property and Biomineralization Ability of Magnesium-Hydroxyapatite Composites with Dicalcium Phosphate Dihydrate and Hydroxyapatite Coatings. , 2016, ACS biomaterials science & engineering.

[139]  V. Rajendran,et al.  Corrosion behavior of Mg/graphene composite in aqueous electrolyte , 2016 .

[140]  M. Sohi,et al.  Corrosion behavior of magnesium and magnesium–hydroxyapatite composite fabricated by friction stir processing in Dulbecco’s phosphate buffered saline , 2016 .

[141]  P. Wittke,et al.  Corrosion fatigue assessment of creep-resistant magnesium alloy Mg–4Al–2Ba–2Ca in aqueous sodium chloride solution , 2016 .

[142]  A. Akbarzadeh,et al.  Graphene: Synthesis, bio-applications, and properties , 2016, Artificial cells, nanomedicine, and biotechnology.

[143]  Shahrouz Zamani Khalajabadi,et al.  Fabrication, bio-corrosion behavior and mechanical properties of a Mg/HA/MgO nanocomposite for biomedical applications , 2015 .

[144]  P. Kumta,et al.  Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium. , 2015, Materials science & engineering. C, Materials for biological applications.

[145]  Xu Chen,et al.  Ratcheting and low-cycle fatigue characterizations of extruded AZ31B Mg alloy with and without corrosive environment , 2015 .

[146]  Peter J. Murphy,et al.  Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants , 2015, Science and technology of advanced materials.

[147]  Y. Huang,et al.  Fabrication and characterization of a biodegradable Mg-2Zn-0.5Ca/1β-TCP composite. , 2015, Materials science & engineering. C, Materials for biological applications.

[148]  Shervin Eslami Harandi,et al.  A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications , 2015 .

[149]  Kun Yu,et al.  In vitro corrosion behavior and cytotoxicity property of magnesium matrix composite with chitosan coating , 2015 .

[150]  M. Gupta,et al.  Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications , 2015 .

[151]  C. Davies,et al.  Corrosion fatigue of a magnesium alloy in modified simulated body fluid , 2015 .

[152]  Shervin Eslami Harandi,et al.  Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review , 2015 .

[153]  Jack G. Zhou,et al.  Fabrication, biodegradation behavior and cytotoxicity of Mg-nanodiamond composites for implant application , 2015, Journal of Materials Science: Materials in Medicine.

[154]  C. Dong,et al.  Stress corrosion cracking susceptibility of a high strength Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy , 2014 .

[155]  A. Muñoz,et al.  Mechanical properties and corrosion behavior of Mg-HAP composites. , 2014, Journal of the mechanical behavior of biomedical materials.

[156]  Hamid Jahed,et al.  Multiaxial effects on LCF behaviour and fatigue failure of AZ31B magnesium extrusion , 2014 .

[157]  B. Hadzima,et al.  Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD). , 2014, Materials science & engineering. C, Materials for biological applications.

[158]  Mukesh Doble,et al.  Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior. , 2014, Materials science & engineering. C, Materials for biological applications.

[159]  L. Dong,et al.  Microstructure, mechanical property and corrosion behavior of co-continuous β-TCP/MgCa composite manufactured by suction casting , 2014 .

[160]  M. Doble,et al.  Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites , 2014, Journal of Materials Science: Materials in Medicine.

[161]  Y. Higuchi,et al.  Communication: different behavior of Young's modulus and fracture strength of CeO2: density functional theory calculations. , 2014, The Journal of chemical physics.

[162]  Yufeng Zheng,et al.  Microstructure and characteristics of interpenetrating β-TCP/Mg–Zn–Mn composite fabricated by suction casting , 2014 .

[163]  Yinghe He,et al.  Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy , 2013 .

[164]  Kun Yu,et al.  In vivo biocompatibility and biodegradation of a Mg-15%Ca3(PO4)2 composite as an implant material , 2013 .

[165]  H. Yang,et al.  Recent progress in biomedical applications of titanium dioxide. , 2013, Physical chemistry chemical physics : PCCP.

[166]  C. Wen,et al.  Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys , 2013, Journal of Materials Science.

[167]  E. Han,et al.  The effect of Zn concentration on the corrosion behavior of Mg-xZn alloys , 2012 .

[168]  T. Lei,et al.  Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys , 2012 .

[169]  P. Prangnell,et al.  Microstructure and performance of a biodegradable Mg–1Ca–2Zn–1TCP composite fabricated by combined solidification and deformation processing , 2012 .

[170]  D. Yoon,et al.  Estimation of Young's modulus of graphene by Raman spectroscopy. , 2012, Nano letters.

[171]  J. Liao,et al.  Corrosion behavior of fine-grained AZ31B magnesium alloy , 2012 .

[172]  B. Bal,et al.  Orthopedic applications of silicon nitride ceramics. , 2012, Acta biomaterialia.

[173]  Zhiming Yu,et al.  In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites. , 2012, Acta biomaterialia.

[174]  Z. Fan,et al.  Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology , 2012 .

[175]  Yanyao Jiang,et al.  Multiaxial fatigue of extruded AZ31B magnesium alloy , 2012 .

[176]  R. Mishra,et al.  Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium , 2012 .

[177]  M. Manuel,et al.  Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. , 2012, Journal of the mechanical behavior of biomedical materials.

[178]  Nick Birbilis,et al.  Exploring graphene as a corrosion protection barrier , 2012 .

[179]  Jie Zhou,et al.  In vitro degradation behavior and bioactivity of magnesium-Bioglass(®) composites for orthopedic applications. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[180]  Jie Zhou,et al.  ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics , 2011 .

[181]  H. Jahed,et al.  Cyclic axial and cyclic torsional behaviour of extruded AZ31B magnesium alloy , 2011 .

[182]  Shinhao Yang,et al.  The structure and mechanical properties of thick rutile–TiO2 films using different coating treatments , 2011 .

[183]  N. Birbilis,et al.  Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing , 2011 .

[184]  H. Jahed,et al.  Cyclic behaviour of wrought magnesium alloy under multiaxial load , 2011 .

[185]  M. Fathi,et al.  Novel magnesium-nanofluorapatite metal matrix nanocomposite with improved biodegradation behavior. , 2011, Journal of biomedical nanotechnology.

[186]  Tao Zhang,et al.  Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior , 2011 .

[187]  Yong Han,et al.  Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites , 2011 .

[188]  Yanyao Jiang,et al.  An experimental study of cyclic deformation of extruded AZ61A magnesium alloy , 2011 .

[189]  P. Chu,et al.  In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. , 2011, Acta biomaterialia.

[190]  R. Walter,et al.  Influence of surface roughness on the corrosion behaviour of magnesium alloy , 2011 .

[191]  W. Dietzel,et al.  Corrosion of an extruded magnesium alloy ZK60 component—The role of microstructural features , 2011 .

[192]  Yanyao Jiang,et al.  Multiaxial fatigue of extruded AZ61A magnesium alloy , 2011 .

[193]  J. Chan,et al.  Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A , 2011 .

[194]  Geraint Williams,et al.  Chloride-induced filiform corrosion of organic-coated magnesium , 2011 .

[195]  N. Birbilis,et al.  Revealing the relationship between grain size and corrosion rate of metals , 2010 .

[196]  M. Fathi,et al.  Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications , 2010 .

[197]  Y. Zheng,et al.  Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. , 2010, Acta biomaterialia.

[198]  M. Fathi,et al.  Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications , 2010 .

[199]  Yong Han,et al.  The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites , 2010 .

[200]  Yufeng Zheng,et al.  Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites , 2010 .

[201]  Richard Appleyard,et al.  The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. , 2010, Biomaterials.

[202]  N. Birbilis,et al.  Effect of Grain Size on Corrosion: A Review , 2010 .

[203]  L. Di Silvio,et al.  In vitro evaluation of samarium (III) oxide as a bone substituting material. , 2010, Journal of biomedical materials research. Part A.

[204]  D. Liu,et al.  Fabrication and corrosion behavior of HA/Mg-Zn biocomposites , 2010 .

[205]  G. Song,et al.  The surface, microstructure and corrosion of magnesium alloy AZ31 sheet , 2010 .

[206]  M. Escudero,et al.  Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. , 2010, Acta biomaterialia.

[207]  W. Zhou,et al.  Effect of carbon nanotubes on corrosion of Mg-CNT composites , 2010 .

[208]  M. Horstemeyer,et al.  Corrosion relationships as a function of time and surface roughness on a structural AE44 magnesium alloy , 2010 .

[209]  W. Xue,et al.  Anti-corrosion microarc oxidation coatings on SiCP/AZ31 magnesium matrix composite , 2009 .

[210]  M. Fathi,et al.  The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder , 2009 .

[211]  Yufeng Zheng,et al.  In vitro corrosion and biocompatibility of binary magnesium alloys. , 2009, Biomaterials.

[212]  C. Hutchinson,et al.  Corrosion of magnesium alloy ZE41 : The role of microstructural features , 2009 .

[213]  S. Omanovic,et al.  The effect of surface roughness on the efficiency of the cyclic potentiodynamic passivation (CPP) method in the improvement of general and pitting corrosion resistance of 316LVM stainless steel , 2008 .

[214]  G. Song,et al.  The effect of crystallographic orientation on the active corrosion of pure magnesium , 2008 .

[215]  M. Terrones,et al.  An anticorrosive magnesium/carbon nanotube composite , 2008 .

[216]  María Vallet-Regí,et al.  Silica Materials for Medical Applications , 2008, The open biomedical engineering journal.

[217]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[218]  Guang-Ling Song,et al.  Control of biodegradation of biocompatable magnesium alloys , 2007 .

[219]  Chengtie Wu,et al.  Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. , 2006, Biomaterials.

[220]  Richard E. Thompson,et al.  Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing , 2006 .

[221]  F. Béguin,et al.  In vitro studies of carbon nanotubes biocompatibility , 2006 .

[222]  Y. W. Chen,et al.  Fabrication and characterization of porous calcium polyphosphate scaffolds , 2006 .

[223]  Frank Witte,et al.  In vitro and in vivo corrosion measurements of magnesium alloys. , 2006, Biomaterials.

[224]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[225]  Chengtie Wu,et al.  Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. , 2005, Biomaterials.

[226]  M. Zheng,et al.  Microarc oxidation coating formed on SiCw/AZ91 magnesium matrix composite and its corrosion resistance , 2005 .

[227]  Q. Jiang,et al.  Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy , 2005 .

[228]  M. Leite,et al.  The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. , 2004, Biomaterials.

[229]  E. Ghali,et al.  General and localized corrosion of magnesium alloys: A critical review , 2004 .

[230]  J. Philip,et al.  Young's modulus of silicon nitride used in scanning force microscope cantilevers , 2004 .

[231]  D. Cáceres,et al.  Hardness and elastic modulus from nanoindentations in nominally pure and doped MgO single crystals , 2002 .

[232]  Wei Gao,et al.  Pilling-Bedworth ratio for oxidation of alloys , 2000 .

[233]  N. Baskar,et al.  Magnesium matrix composite for biomedical applications through powder metallurgy – Review , 2020 .

[234]  F. Pan,et al.  Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys. , 2017, Materials science & engineering. C, Materials for biological applications.

[235]  P. Uggowitzer,et al.  Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. , 2017, Journal of the mechanical behavior of biomedical materials.

[236]  M. Gupta,et al.  Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications , 2015 .

[237]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[238]  Wei-jia Tang,et al.  On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction , 2012 .

[239]  Berend Denkena,et al.  Biodegradable magnesium implants for orthopedic applications , 2012, Journal of Materials Science.

[240]  Mohammed Rafiq Abdul Kadir,et al.  Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys , 2012 .

[241]  Berend Denkena,et al.  Biocompatible Magnesium Alloys as Absorbable Implant Materials – Adjusted Surface and Subsurface Properties by Machining Processes , 2007 .

[242]  H. Kitagawa,et al.  On the Corrosion Fatigue , 1959 .