Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans.

Bacteria in a biofilm are enmeshed in a self-synthesized extracellular polysaccharide matrix that holds the bacteria together in a mass and firmly attaches the bacterial mass to the underlying surface. A major component of the extracellular polysaccharide matrix in several phylogenetically diverse bacteria is PGA, a linear polymer of N-acetylglucosamine residues in beta(1,6)-linkage. PGA is produced by the Gram-negative periodontopathogen Actinobacillus actinomycetemcomitans as well as by the Gram-positive device-associated pathogen Staphylococcus epidermidis. We recently reported that A.actinomycetemcomitans produces a soluble glycoside hydrolase named dispersin B, which degrades PGA. Here, we present the crystal structure of dispersin B at 2.0A in complex with a glycerol and an acetate ion at the active site. The enzyme crystallizes in the orthorhombic space group C222(1) with cell dimensions a=41.02A, b=86.13A, c=185.77A. The core of the enzyme consists a (beta/alpha)(8) barrel topology similar to other beta-hexosaminidases but significant differences exist in the arrangement of loops hovering in the vicinity of the active site. The location and interactions of the glycerol and acetate moieties in conjunction with the sequence analysis suggest that dispersin B cleaves beta(1,6)-linked N-acetylglucosamine polymer using a catalytic machinery similar to other family 20 hexosaminidases which cleave beta(1,4)-linked N-acetylglucosamine residues.

[1]  D. Mack,et al.  Molecular basis of intercellular adhesion in the biofilm‐forming Staphylococcus epidermidis , 1996, Molecular microbiology.

[2]  J. Slots,et al.  Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. , 1999, Periodontology 2000.

[3]  B. Henrissat,et al.  Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. , 1997, The Biochemical journal.

[4]  S. Withers,et al.  Crystallographic Evidence for Substrate-assisted Catalysis in a Bacterial β-Hexosaminidase* , 2001, The Journal of Biological Chemistry.

[5]  Š. Janeček,et al.  Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region , 2002, Cellular and Molecular Life Sciences CMLS.

[6]  H Edelsbrunner,et al.  Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins , 1998, Proteins.

[7]  F. Haesebrouck,et al.  Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection. , 1997, Veterinary microbiology.

[8]  F. Studier,et al.  Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter. , 1991, Journal of molecular biology.

[9]  R. Süssmuth,et al.  Characterization of theN-Acetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus epidermidisPolysaccharide Intercellular Adhesin* , 1998, The Journal of Biological Chemistry.

[10]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[11]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[12]  Donald A. Goldmann,et al.  Immunochemical Properties of the Staphylococcal Poly-N-Acetylglucosamine Surface Polysaccharide , 2002, Infection and Immunity.

[13]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[14]  G J Davies,et al.  Nomenclature for sugar-binding subsites in glycosyl hydrolases. , 1997, The Biochemical journal.

[15]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[16]  L. Passerini,et al.  Biofilms on indwelling vascular catheters , 1992, Critical care medicine.

[17]  P. Fitzgerald-Bocarsly,et al.  Phenotypic variation in Actinobacillus actinomycetemcomitans during laboratory growth: implications for virulence. , 1999, Microbiology.

[18]  B. J. Hinnebusch,et al.  Depolymerization of β-1,6-N-Acetyl-d-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms , 2005, Journal of bacteriology.

[19]  M. James,et al.  Structural and Functional Characterization of Streptomyces plicatus β-N-Acetylhexosaminidase by Comparative Molecular Modeling and Site-directed Mutagenesis* , 1998, The Journal of Biological Chemistry.

[20]  I. Sutherland,et al.  The biofilm matrix--an immobilized but dynamic microbial environment. , 2001, Trends in microbiology.

[21]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[22]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[23]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[24]  H. Rohde,et al.  Genes Involved in the Synthesis and Degradation of Matrix Polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae Biofilms , 2004, Journal of bacteriology.

[25]  D. Fine,et al.  Enzymatic Detachment of Staphylococcus epidermidis Biofilms , 2004, Antimicrobial Agents and Chemotherapy.

[26]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[27]  B Henrissat,et al.  A classification of glycosyl hydrolases based on amino acid sequence similarities. , 1991, The Biochemical journal.

[28]  K Cowtan,et al.  Miscellaneous algorithms for density modification. , 1998, Acta crystallographica. Section D, Biological crystallography.

[29]  I. Sutherland Biofilm exopolysaccharides: a strong and sticky framework. , 2001, Microbiology.

[30]  V S Lamzin,et al.  ARP/wARP and molecular replacement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[31]  M. James,et al.  Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. , 2003, Journal of molecular biology.

[32]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[33]  P. Mishra,et al.  Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase. , 2003, Journal of molecular biology.

[34]  J. Preston,et al.  The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.

[35]  L. Svennerholm CHROMATOGRAPHlC SEPARATION OF HUMAN BRAIN GANGLIOSIDES * , 1963, Journal of neurochemistry.

[36]  S Subramaniam,et al.  Analytical shape computation of macromolecules: I. molecular area and volume through alpha shape , 1998, Proteins.

[37]  Š. Janeček,et al.  Relationship of sequence and structure to specificity in the α-amylase family of enzymes , 2001 .

[38]  D. Goldmann,et al.  The ica Locus of Staphylococcus epidermidis Encodes Production of the Capsular Polysaccharide/Adhesin , 1998, Infection and Immunity.

[39]  G. Schwarzmann,et al.  The human GM2 activator protein. A substrate specific cofactor of beta-hexosaminidase A. , 1991, The Journal of biological chemistry.

[40]  M. Otto,et al.  Staphylococcus epidermidis infections. , 2002, Microbes and infection.

[41]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[42]  Jones Ta,et al.  Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[43]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[44]  Timm Maier,et al.  The X-ray crystal structure of human beta-hexosaminidase B provides new insights into Sandhoff disease. , 2003, Journal of molecular biology.

[45]  D. Fine,et al.  Biofilm Growth and Detachment of Actinobacillus actinomycetemcomitans , 2003, Journal of bacteriology.

[46]  R. Gibbons Bacterial Adhesion to Oral Tissues: A Model for Infectious Diseases , 1989, Journal of dental research.

[47]  R. Genco,et al.  Microbial Pathogenicity Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in Human Periodontal Disease: Virulence Factors in Colonization, Survival, and Tissue Destruction , 1984, Journal of dental research.

[48]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[49]  D. Mack,et al.  The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis , 1996, Journal of bacteriology.

[50]  Zbigniew Dauter,et al.  Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay–Sachs disease , 1996, Nature Structural Biology.

[51]  D. Fine,et al.  Detachment of Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous β-Hexosaminidase Activity , 2003, Journal of bacteriology.

[52]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[53]  H. Edelsbrunner,et al.  Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design , 1998, Protein science : a publication of the Protein Society.

[54]  S V Evans,et al.  SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. , 1993, Journal of molecular graphics.

[55]  Charles S. Bond,et al.  TopDraw: a sketchpad for protein structure topology cartoons , 2003, Bioinform..