Effect of composition of (La0.8Sr0.2MnO3–Y2O3-stabilized ZrO2) cathodes: Correlating three-dimensional microstructure and polarization resistance

[1]  Wing Kam Liu,et al.  Multi-scale solid oxide fuel cell materials modeling , 2009 .

[2]  Robert J. Kee,et al.  Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes , 2009 .

[3]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[4]  Jon G. Pharoah,et al.  Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes , 2009 .

[5]  Konstantin Mischaikow,et al.  Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity , 2009, Microscopy and Microanalysis.

[6]  Nigel P. Brandon,et al.  Microstructural Modeling of Solid Oxide Fuel Cell Anodes , 2008 .

[7]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[8]  Chih-Long Tsai,et al.  Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates , 2008 .

[9]  Joshua L. Hertz,et al.  Measurement and finite element modeling of triple phase boundary-related current constriction in YSZ , 2007 .

[10]  P. Voorhees,et al.  Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes Using Focused Ion Beam - Scanning Electron Microscopy , 2007 .

[11]  P. Voorhees,et al.  The morphological evolution of dendritic microstructures during coarsening , 2006 .

[12]  Doris Sebold,et al.  Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs , 2005 .

[13]  A. Virkar,et al.  Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .

[14]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[15]  B Münch,et al.  Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.

[16]  M. Trunec Fabrication of zirconia- and ceria-based thin-wall tubes by thermoplastic extrusion , 2004 .

[17]  L. D. Jonghe,et al.  Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes , 2004 .

[18]  E. P. Murray,et al.  (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells , 2001 .

[19]  Tohru Kato,et al.  Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry , 1998 .

[20]  N. Minh Ceramic Fuel Cells , 1993 .

[21]  M. Nishiya,et al.  LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells , 1992 .

[22]  N. Sakai,et al.  Reaction between solid oxide fuel cell materials , 1992 .

[23]  Toshio Oshima,et al.  Estimation of the Co-ordination number in a Multi-Component Mixture of Spheres , 1983 .

[24]  Kuan-Zong Fung,et al.  The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .

[25]  H. Bouwmeester,et al.  Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .

[26]  Scott A. Barnett,et al.  Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance , 1997 .