Effect of composition of (La0.8Sr0.2MnO3–Y2O3-stabilized ZrO2) cathodes: Correlating three-dimensional microstructure and polarization resistance
暂无分享,去创建一个
Scott A. Barnett | Katsuyo Thornton | Daniel R. Mumm | K. Thornton | S. Barnett | James R. Wilson | Hsun-Yi Chen | J. Scott Cronin | D. Mumm | Anh T. Duong | Hsun-Yi Chen | Sherri Rukes | A. Duong | J. S. Cronin | S. Rukes
[1] Wing Kam Liu,et al. Multi-scale solid oxide fuel cell materials modeling , 2009 .
[2] Robert J. Kee,et al. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes , 2009 .
[3] Marcio Gameiro,et al. Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .
[4] Jon G. Pharoah,et al. Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes , 2009 .
[5] Konstantin Mischaikow,et al. Three-Dimensional Analysis of Solid Oxide Fuel Cell Ni-YSZ Anode Interconnectivity , 2009, Microscopy and Microanalysis.
[6] Nigel P. Brandon,et al. Microstructural Modeling of Solid Oxide Fuel Cell Anodes , 2008 .
[7] Boris Iwanschitz,et al. Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .
[8] Chih-Long Tsai,et al. Anode-pore tortuosity in solid oxide fuel cells found from gas and current flow rates , 2008 .
[9] Joshua L. Hertz,et al. Measurement and finite element modeling of triple phase boundary-related current constriction in YSZ , 2007 .
[10] P. Voorhees,et al. Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes Using Focused Ion Beam - Scanning Electron Microscopy , 2007 .
[11] P. Voorhees,et al. The morphological evolution of dendritic microstructures during coarsening , 2006 .
[12] Doris Sebold,et al. Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs , 2005 .
[13] A. Virkar,et al. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters , 2005 .
[14] S. Adler. Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.
[15] B Münch,et al. Three‐dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography , 2004, Journal of microscopy.
[16] M. Trunec. Fabrication of zirconia- and ceria-based thin-wall tubes by thermoplastic extrusion , 2004 .
[17] L. D. Jonghe,et al. Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes , 2004 .
[18] E. P. Murray,et al. (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells , 2001 .
[19] Tohru Kato,et al. Active Sites Imaging for Oxygen Reduction at the La0.9Sr0.1MnO3 − x /Yttria‐Stabilized Zirconia Interface by Secondary‐Ion Mass Spectrometry , 1998 .
[20] N. Minh. Ceramic Fuel Cells , 1993 .
[21] M. Nishiya,et al. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells , 1992 .
[22] N. Sakai,et al. Reaction between solid oxide fuel cell materials , 1992 .
[23] Toshio Oshima,et al. Estimation of the Co-ordination number in a Multi-Component Mixture of Spheres , 1983 .
[24] Kuan-Zong Fung,et al. The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .
[25] H. Bouwmeester,et al. Electrode Properties of Sr‐Doped LaMnO3 on Yttria‐Stabilized Zirconia I. Three‐Phase Boundary Area , 1997 .
[26] Scott A. Barnett,et al. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance , 1997 .