Universal scaling laws of Kerr frequency combs.

Using the known solutions of the Lugiato-Lefever equation, we derive universal trends of Kerr frequency combs. In particular, normalized properties of temporal cavity soliton solutions lead us to a simple analytic estimate of the maximum attainable bandwidth for given pump resonator parameters. The result is validated via comparison with past experiments encompassing a diverse range of resonator configurations and parameters.

[1]  Marc Haelterman,et al.  Dissipative modulation instability in a nonlinear dispersive ring cavity , 1992 .

[2]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[3]  Nan Yu,et al.  Frequency comb from a microresonator with engineered spectrum. , 2012, Optics express.

[4]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[5]  Vladimir S. Ilchenko,et al.  Hard and Soft Excitation Regimes of Kerr Frequency Combs , 2011, 1111.3916.

[6]  Y. Q. Xu,et al.  Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. , 2012, Physical review letters.

[7]  S Wabnitz,et al.  Suppression of interactions in a phase-locked soliton optical memory. , 1993, Optics letters.

[8]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[9]  A. Matsko,et al.  Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. , 2012, Optics letters.

[10]  L. Gelens,et al.  Dynamics of one-dimensional Kerr cavity solitons. , 2013, Optics express.

[11]  A. Matsko,et al.  Mode-locked Kerr frequency combs. , 2011, Optics letters.

[12]  Scott A. Diddams,et al.  Microresonator based optical frequency combs | NIST , 2011 .

[13]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[14]  A. Matsko,et al.  On excitation of breather solitons in an optical microresonator. , 2012, Optics letters.

[15]  N. Yu,et al.  Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators , 2010 .

[16]  I. V. Barashenkov,et al.  Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  A. Mussot,et al.  Nonlinear symmetry breaking induced by third-order dispersion in optical fiber cavities. , 2013, Physical review letters.

[18]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[19]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.