Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge23Sb7S70 and As40S60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

[1]  Jacklyn Novak,et al.  Effect of annealing conditions on the physio-chemical properties of spin-coated As_2Se_3 chalcogenide glass films , 2012 .

[2]  Hongtao Lin,et al.  Integrated flexible chalcogenide glass photonic devices , 2014, Nature Photonics.

[3]  Danvers E. Johnston,et al.  Deposition of Ge23Sb7S70 chalcogenide glass films by electrospray , 2015 .

[4]  A. Syed,et al.  Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film , 2015 .

[5]  Amnon Yariv,et al.  Optical Waves in Crystals: Propagation and Control of Laser Radiation , 1983 .

[6]  Virginie Nazabal,et al.  Evanescent wave optical micro-sensor based on chalcogenide glass , 2012 .

[7]  M. Cloupeau,et al.  ELECTROHYDRODYNAMIC SPRAYING FUNCTIONING MODES - A CRITICAL-REVIEW , 1994 .

[8]  Bit Optical Waves in Crystals Propagation and Control of Laser Radiation , 2022 .

[9]  Craig B. Arnold,et al.  Structural properties of solution processed Ge23Sb7S70 glass materials , 2012 .

[10]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[11]  Pao Tai Lin,et al.  Inverted-Rib Chalcogenide Waveguides by Solution Process , 2014 .

[12]  J. D. Musgraves,et al.  Raman spectroscopic analysis of the Ge–As–S chalcogenide glass-forming system , 2014 .

[13]  Mark A. Reed,et al.  Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets , 2006 .

[14]  Xudong Fan,et al.  Optical ring resonators for biochemical and chemical sensing , 2011, Analytical and bioanalytical chemistry.

[15]  B. Eggleton,et al.  Influence of Annealing Conditions on the Optical and Structural Properties of Spin-coated as 2 S 3 Chalcogenide Glass Thin Films References and Links , 2022 .

[16]  Craig B. Arnold,et al.  Structural properties of solution processed Ge 23 Sb 7 S 70 glass materials , 2012 .

[17]  J. David Musgraves,et al.  Chalcogenide glass microphotonics : Stepping into the spotlight , 2015 .

[18]  S. Novak,et al.  Electrospray deposition of chalcogenide glass films for gradient refractive index and quantum dot incorporation , 2015 .

[19]  J. D. Musgraves,et al.  Evolution of the structure and properties of solution-based Ge23Sb7S70 thin films during heat treatment , 2013 .

[20]  Sasan Fathpour,et al.  Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films. , 2016, Journal of visualized experiments : JoVE.

[21]  Zhiqiang Gao,et al.  Electrospray Dense Suspensions of TiO2 Nanoparticles for Dye Sensitized Solar Cells , 2013 .

[22]  Kathleen Richardson,et al.  Ultralow Dispersion Multicomponent Thin‐Film Chalcogenide Glass for Broadband Gradient‐Index Optics , 2018, Advanced materials.