Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution‐dependent limitations

[1] Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as “correlation loss.” Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications.

[1]  David L. Alumbaugh,et al.  Estimating moisture contents in the vadose zone using cross‐borehole ground penetrating radar: A study of accuracy and repeatability , 2002 .

[2]  Keiiti Aki,et al.  Determination of the three‐dimensional seismic structure of the lithosphere , 1977 .

[3]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[4]  J. Rector,et al.  Characterization of resolution and uniqueness in crosswell direct‐arrival traveltime tomography using the Fourier projection slice theorem , 1994 .

[5]  W. Daily,et al.  Cross-borehole resistivity tomography , 1991 .

[6]  M. Hayashi,et al.  Integrated hydrogeological and geophysical study of depression‐focused groundwater recharge in the Canadian prairies , 2004 .

[7]  R. Snieder,et al.  The Fresnel volume and transmitted waves , 2004 .

[8]  F. A. Dahlen,et al.  Resolution limit of traveltime tomography , 2004 .

[9]  A. Binley,et al.  Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging , 2001 .

[10]  Frederick D. Day-Lewis,et al.  Time‐lapse inversion of crosswell radar data , 2002 .

[11]  S. Friedel,et al.  Resolution, stability and efficiency of resistivity tomography estimated from a generalized inverse approach , 2003 .

[12]  Kamini Singha,et al.  A framework for inferring field‐scale rock physics relationships through numerical simulation , 2005 .

[13]  D. Oldenburg,et al.  Estimating depth of investigation in DC resistivity and IP surveys , 1999 .

[14]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[15]  Stephan Husen,et al.  Local earthquake tomography between rays and waves: fat ray tomography , 2001 .

[16]  Frederick D. Day-Lewis,et al.  Time‐lapse imaging of saline‐tracer transport in fractured rock using difference‐attenuation radar tomography , 2003 .

[17]  Andre G. Journel,et al.  Markov Models for Cross-Covariances , 1999 .

[18]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[19]  Roelof Versteeg,et al.  Object-Based Inversion of Crosswell Radar Tomography Data to Monitor Vegetable Oil Injection Experiments , 2004 .

[20]  H. Saunders,et al.  Random Fields: Analysis & Synthesis , 1985 .

[21]  J. Vidale Finite‐difference calculation of traveltimes in three dimensions , 1990 .

[22]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[23]  S. Gorelick,et al.  Estimating lithologic and transport properties in three dimensions using seismic and tracer data , 1996 .

[24]  C. G. Gardner,et al.  High dielectric constant microwave probes for sensing soil moisture , 1974 .

[25]  T. Matsuoka,et al.  Seismic traveltime tomography using Fresnel volume approach , 1999 .

[26]  A. Binley,et al.  A 3D ERT study of solute transport in a large experimental tank , 2002 .

[27]  Stephan Husen,et al.  Local earthquake tomography between rays and waves : fat ray tomography , 2001 .

[28]  Brian J. Mailloux,et al.  Hydrogeological characterization of the south oyster bacterial transport site using geophysical data , 2001 .

[29]  G. Böhm,et al.  A geostatistical framework for incorporating seismic tomography auxiliary data into hydraulic conductivity estimation , 1998 .

[30]  W. Daily,et al.  The effects of noise on Occam's inversion of resistivity tomography data , 1996 .

[31]  Andrew Binley,et al.  Evaluation of permeable reactive barrier (PRB) integrity using electrical imaging methods , 2003 .

[32]  G. West,et al.  Seismic tomography at a fire-flood site , 1989 .

[33]  J. Sheng,et al.  Finite‐frequency resolution limits of wave path traveltime tomography for smoothly varying velocity models , 2003 .

[34]  Andrew Binley,et al.  High‐resolution characterization of vadose zone dynamics using cross‐borehole radar , 2001 .

[35]  D. Geselowitz An application of electrocardiographic lead theory to impedance plethysmography. , 1971, IEEE transactions on bio-medical engineering.

[36]  K. Singha,et al.  Application Of A New Monte Carlo Approach To Calibrating Rock Physics Relationships: Examples Using Electrical Resistivity And Ground Penetrating Radar Tomography , 2004 .

[37]  A. P. Annan,et al.  Electromagnetic determination of soil water content: Measurements in coaxial transmission lines , 1980 .

[38]  Douglas LaBrecque,et al.  Monitoring an underground steam injection process using electrical resistance tomography , 1993 .

[39]  G. Zandt Seismic images of the deep structure of the San Andreas Fault System, Central Coast Ranges, California , 1981 .

[40]  F. Day‐Lewis,et al.  Assessing the resolution‐dependent utility of tomograms for geostatistics , 2004 .

[41]  Frederick D. Day-Lewis,et al.  Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA , 2006 .

[42]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[43]  J. Vidale Finite-difference calculation of travel times , 1988 .

[44]  William Menke,et al.  The resolving power of cross‐borehole tomography , 1984 .

[45]  Alan C. Tripp,et al.  Two-dimensional resistivity inversion , 1984 .

[46]  John E. Peterson,et al.  Beyond ray tomography: Wavepaths and Fresnel volumes , 1995 .

[47]  A. Binley,et al.  DC Resistivity and Induced Polarization Methods , 2005 .

[48]  Gregory A. Newman,et al.  Image appraisal for 2-D and 3-D electromagnetic inversion , 2000 .

[49]  Gerard T. Schuster,et al.  Resolution limits for crosswell migration and traveltime tomography , 1996 .

[50]  E. Poeter,et al.  Field example of data fusion in site characterization , 1995 .

[51]  Stephen K. Park Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring data , 1998 .

[52]  Carlton Gamer Colorado Springs, Colorado , 1973 .

[53]  S. Gorelick,et al.  Saline tracer visualized with three‐dimensional electrical resistivity tomography: Field‐scale spatial moment analysis , 2005 .

[54]  J. J. Peterson Pre-inversion Corrections and Analysis of Radar Tomographic Data , 2001 .