Site-Selective γ-C(sp3 )-H and γ-C(sp2 )-H Arylation of Free Amino Esters Promoted by a Catalytic Transient Directing Group.

The first selective PdII -catalysed γ-C(sp3 )-H and γ-C(sp2 )-H arylation of free amino esters using a commercially available catalytic transient directing group. A variety of free amino esters, including α-amino esters and β-amino esters, amino monoesters and amino bis-esters, are shown to react with a diverse range of simple aryl and heteroaryl iodide reagents.

[1]  Guangbin Dong,et al.  sp3 C–H activation via exo-type directing groups , 2018, Chemical science.

[2]  T. Rovis,et al.  Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. , 2018, Angewandte Chemie.

[3]  L. Ackermann,et al.  Transient Directing Groups for Transformative C–H Activation by Synergistic Metal Catalysis , 2017 .

[4]  jin-quan yu,et al.  Ligand-Enabled γ-C(sp3)–H Cross-Coupling of Nosyl-Protected Amines with Aryl- and Alkylboron Reagents , 2017 .

[5]  J. Albert,et al.  Preparation of Substituted Tetrahydroisoquinolines by Pd(II)-Catalyzed NH2-Directed Insertion of Michael Acceptors into C–H Bonds Followed by NH2-Conjugated Addition , 2017 .

[6]  M. Murakami,et al.  Buttressing Salicylaldehydes: A Multipurpose Directing Group for C(sp3 )-H Bond Activation. , 2017, Angewandte Chemie.

[7]  Martin D. Eastgate,et al.  Pd-Catalyzed γ-C(sp3)-H Arylation of Free Amines Using a Transient Directing Group. , 2016, Journal of the American Chemical Society.

[8]  Yongbing Liu,et al.  Site-selective C–H arylation of primary aliphatic amines enabled by a catalytic transient directing group , 2016, Nature Chemistry.

[9]  Guangbin Dong,et al.  Catalytic C(sp(3) )-H Arylation of Free Primary Amines with an exo Directing Group Generated In Situ. , 2016, Angewandte Chemie.

[10]  D. Shi,et al.  Pd-Catalyzed Coupling of γ-C(sp(3))-H Bonds of Oxalyl Amide-Protected Amino Acids with Heteroaryl and Aryl Iodides. , 2016, The Journal of organic chemistry.

[11]  G. He,et al.  Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp(3) C-H Functionalization. , 2016, Accounts of chemical research.

[12]  jin-quan yu,et al.  Functionalization of C(sp3)–H bonds using a transient directing group , 2016, Science.

[13]  K. Pasunooti,et al.  Auxiliary-Directed Pd-Catalyzed γ-C(sp(3))-H Bond Activation of α-Aminobutanoic Acid Derivatives. , 2015, Organic letters.

[14]  M. Gaunt,et al.  A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols. , 2015, Nature chemistry.

[15]  Guangbin Dong,et al.  Transition metal-catalyzed ketone-directed or mediated C-H functionalization. , 2015, Chemical Society reviews.

[16]  jin-quan yu,et al.  Monoselective o-C–H Functionalizations of Mandelic Acid and α-Phenylglycine , 2015, Journal of the American Chemical Society.

[17]  B. Vergani,et al.  Amino acidic scaffolds bearing unnatural side chains: an old idea generates new and versatile tools for the life sciences. , 2014, Bioorganic & medicinal chemistry letters.

[18]  M. Brimble,et al.  C-H functionalization in the synthesis of amino acids and peptides. , 2014, Chemical reviews.

[19]  Guangbin Dong,et al.  Regioselective ketone α-alkylation with simple olefins via dual activation , 2014, Science.

[20]  J. Reek,et al.  Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization , 2014 .

[21]  Zhangjie Shi,et al.  Direct borylation of primary C-H bonds in functionalized molecules by palladium catalysis. , 2014, Angewandte Chemie.

[22]  Xiao Xu,et al.  Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media , 2014, Nature Photonics.

[23]  Mengyang Fan,et al.  Palladium-catalyzed direct functionalization of 2-aminobutanoic acid derivatives: application of a convenient and versatile auxiliary. , 2013, Angewandte Chemie.

[24]  Naoto Chatani,et al.  Katalytische Funktionalisierung von C(sp2)-H- und C(sp3)-H-Bindungen unter Verwendung von zweizähnigen dirigierenden Gruppen , 2013 .

[25]  N. Chatani,et al.  Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. , 2013, Angewandte Chemie.

[26]  S. Milstien,et al.  Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond , 2013, Nature Reviews Drug Discovery.

[27]  M. Largeron Protocols for the Catalytic Oxidation of Primary Amines to Imines , 2013 .

[28]  Inchan Kwon,et al.  Non‐Natural Amino Acids for Protein Engineering and New Protein Chemistries , 2013 .

[29]  T. Calvet,et al.  NH2 As a Directing Group: From the Cyclopalladation of Amino Esters to the Preparation of Benzolactams by Palladium(II)-Catalyzed Carbonylation of N-Unprotected Arylethylamines , 2013 .

[30]  J. Carretero,et al.  Palladium-catalyzed N-(2-pyridyl)sulfonyl-directed C(sp3)–H γ-arylation of amino acid derivatives , 2013 .

[31]  C. Bruneau,et al.  Ruthenium(II)-catalyzed C-H bond activation and functionalization. , 2012, Chemical reviews.

[32]  G. He,et al.  A practical strategy for the structural diversification of aliphatic scaffolds through the palladium-catalyzed picolinamide-directed remote functionalization of unactivated C(sp3)-H bonds. , 2011, Angewandte Chemie.

[33]  Bernhard Breit,et al.  Entfernbare dirigierende Gruppen in der organischen Synthese und Katalyse , 2011 .

[34]  B. Breit,et al.  Removable directing groups in organic synthesis and catalysis. , 2011, Angewandte Chemie.

[35]  J. Albert,et al.  Preparation of benzolactams by Pd(II)-catalyzed carbonylation of N-unprotected arylethylamines. , 2011, Chemical communications.

[36]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[37]  O. Daugulis,et al.  Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds. , 2010, Journal of the American Chemical Society.

[38]  J. Ellman,et al.  Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. , 2010, Chemical reviews.

[39]  Melanie S Sanford,et al.  Palladium-catalyzed ligand-directed C-H functionalization reactions. , 2010, Chemical reviews.

[40]  O. Daugulis,et al.  Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. , 2009, Accounts of chemical research.

[41]  X. Chen,et al.  Palladium(II)‐katalysierte C‐H‐Aktivierung/C‐C‐Kreuzkupplung: Vielseitigkeit und Anwendbarkeit , 2009 .

[42]  jin-quan yu,et al.  Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. , 2009, Angewandte Chemie.

[43]  O. Daugulis,et al.  Direct palladium-catalyzed ortho-arylation of benzylamines. , 2006, Organic letters.

[44]  O. Daugulis,et al.  Highly regioselective arylation of sp3 C-H bonds catalyzed by palladium acetate. , 2005, Journal of the American Chemical Society.

[45]  P. Coleman,et al.  Non-peptide αvβ3 antagonists. Part 7: 3-Substituted tetrahydro-[1,8]naphthyridine derivatives , 2004 .

[46]  C. Jun,et al.  Chelation-Assisted Intermolecular Hydroacylation: Direct Synthesis of Ketone from Aldehyde and 1-Alkene , 1997 .

[47]  M. G. Palin,et al.  Orthometalation of Primary Amines. 4.1 Orthopalladation of Primary Benzylamines and (2-Phenylethyl)amine† , 1997 .

[48]  C. Ingold,et al.  CXIX.—The formation and stability of spiro-compounds. Part I. spiro-Compounds from cyclohexane , 1915 .