Quasimonotone Quasivariational Inequalities: Existence Results and Applications

A quasivariational inequality is a variational inequality in which the constraint set depends on the variable. Based on fixed point techniques, we prove various existence results under weak assumptions on the set-valued operator defining the quasivariational inequality, namely quasimonotonicity and lower or upper sign-continuity. Applications to quasi-optimization and traffic network are also considered.

[1]  J. P. Crouzeix,et al.  Continuity properties of the normal cone to the level sets of a quasiconvex function , 1990 .

[2]  F. Giannessi,et al.  On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation , 2000 .

[3]  Panos M. Pardalos,et al.  Generalized Nash equilibrium problems for lower semi-continuous strategy maps , 2011, J. Glob. Optim..

[4]  Fabio Raciti,et al.  Time-dependent Variational Inequalities and Applications to Equilibrium Problems , 2004, J. Glob. Optim..

[5]  D. Aussel,et al.  Existence of time-dependent traffic equilibria , 2012 .

[6]  Didier Aussel,et al.  Semicontinuity of the solution map of quasivariational inequalities , 2011, J. Glob. Optim..

[7]  Didier Aussel,et al.  Maximal quasimonotonicity and dense single-directional properties of quasimonotone operators , 2013, Math. Program..

[8]  Annamaria Barbagallo,et al.  Regularity results for evolutionary nonlinear variational and quasi-variational inequalities with applications to dynamic equilibrium problems , 2008, J. Glob. Optim..

[9]  Didier Aussel,et al.  Generalized Nash equilibrium problem, variational inequality and quasiconvexity , 2008, Oper. Res. Lett..

[10]  Nicolas Hadjisavvas,et al.  Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions , 1999 .

[11]  Didier Aussel,et al.  On Quasimonotone Variational Inequalities , 2004 .

[12]  Nicolas Hadjisavvas Continuity and Maximality Properties of Pseudomonotone Operators , 2003 .

[13]  Didier Aussel,et al.  Adjusted Sublevel Sets, Normal Operator, and Quasi-convex Programming , 2005, SIAM J. Optim..

[14]  Samir Adly,et al.  Optimal control of a quasi-variational obstacle problem , 2010, J. Glob. Optim..

[15]  H. Debrunner,et al.  Ein Erweiterungssatz für monotone Mengen , 1964 .

[16]  D. Aussel,et al.  Stability of Quasimonotone Variational Inequality Under Sign-Continuity , 2013, J. Optim. Theory Appl..

[17]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[18]  D. Aussel,et al.  Quasiconvex Minimization on a Locally Finite Union of Convex Sets , 2008 .

[19]  Nicolas Hadjisavvas,et al.  Generalized Convexity, Generalized Monotonicity and Nonsmooth Analysis , 2005 .

[20]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[21]  B. T. Kien,et al.  On the Solution Existence of Generalized Quasivariational Inequalities with Discontinuous Multifunctions , 2007 .

[22]  Nguyen Xuan Tan,et al.  Quasi‐Variational Inequalities in Topological Linear Locally Convex Hausdorff Spaces , 1985 .

[23]  D. Aussel,et al.  Quasiconvex programming with locally starshaped constraint region and applications to quasiconvex MPEC , 2006 .

[24]  Anna Nagurney,et al.  The Internet, evolutionary variational inequalities, and the time-dependent Braess paradox , 2007, Comput. Manag. Sci..

[25]  V. Runde A Taste of Topology , 2005 .