Computing Galois Groups of Completely Reducible Differential Equations

We give an algorithm to calculate a presentation of the Picard?Vessiot extension associated to a completely reducible linear differential equation (i.e. an equation whose Galois group is reductive). Using this, we show how to compute the Galois group of such an equation as well as properties of the Galois groups of general equations.

[1]  E. Noether,et al.  Der Endlichkeitssatz der Invarianten endlicher Gruppen , 1915 .

[2]  Mark van Hoeij,et al.  Factorization of Differential Operators with Rational Functions Coefficients , 1997, J. Symb. Comput..

[3]  J. Coates,et al.  Construction of rational functions on a curve , 1970, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Nicholas M. Katz,et al.  A SIMPLE ALGORITHM FOR CYCLIC VECTORS , 1987 .

[5]  J. Cremona,et al.  ALGORITHMIC ALGEBRAIC NUMBER THEORY (Encyclopedia of Mathematics and its Applications) , 1991 .

[6]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[7]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[8]  J. Humphreys,et al.  Linear Algebraic Groups , 1975 .

[9]  D. W. Masser New Advances in Transcendence Theory: Linear relations on algebraic groups , 1988 .

[10]  A. L. Onishchik,et al.  Lie groups and algebraic groups , 1990 .

[11]  David L. Wehlau,et al.  Constructive invariant theory for tori , 1993 .

[12]  Dima Grigoriev,et al.  Complexity of irreducibility testing for a system of linear ordinary differential equations , 1990, ISSAC '90.

[13]  Ludwig Schlesinger,et al.  Handbuch der Theorie der linearen Differentialgleichungen , 1898 .

[14]  I. Kaplansky An introduction to differential algebra , 1957 .

[15]  Michael F. Singer,et al.  Linear differential equations and products of linear forms , 1997 .

[16]  Michael F. Singer,et al.  Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients , 1989, J. Symb. Comput..

[17]  Elie Compoint,et al.  Differential Equations and Algebraic Relations , 1998, J. Symb. Comput..

[18]  Mark van Hoeij,et al.  An algorithm for computing invariants of differential Galois groups , 1997 .

[19]  Harm Derksen,et al.  Constructive invariant theory , 1997 .

[20]  D. Eisenbud,et al.  Direct methods for primary decomposition , 1992 .

[21]  M. Singer Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations , 1981 .

[22]  B. Sturmfels Gröbner bases of toric varieties , 1991 .

[23]  B. A. F. Wehrfritz,et al.  Infinite linear groups , 1973 .

[24]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[25]  Barry M. Trager,et al.  Integration of algebraic functions , 1984 .

[26]  Mark van Hoeij,et al.  Rational Solutions of the Mixed Differential Equation and Its Application to Factorization of Differential Operators , 1996, ISSAC.

[27]  George R. Kempf More on computing invariants , 1991 .

[28]  A. B. BASSET,et al.  Modern Algebra , 1905, Nature.

[29]  Daniel Bertrand Minimal heights and polarizations on group varieties , 1995 .

[30]  E. R. Kolchin,et al.  Algebraic Groups and Algebraic Dependence , 1968 .

[31]  Michael F. Singer Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients , 1989, Computers and Mathematics.

[32]  Andy R. Magid,et al.  Lectures on differential Galois theory , 1994 .

[33]  B. Dwork,et al.  On Second Order Linear Differential Equations with Algebraic Solutions , 1979 .

[34]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.