Integrated ecological-economic modelling of water pollution abatement management options in the Upper Ems River Basin

This paper presents the results of the FLUMAGIS project, in which we developed a spatial decision support system (SDSS) to support the implementation of the European Water Framework Directive (WFD). The modelling approach is based on the integration of ecological and socio-economic assessment methods, scale-specific and GIS-based data and knowledge modelling and visualization techniques. The project study area is the intensively cropped Upper Ems River Basin in north-western Germany. A method was developed that enables the transfer of scale-specific data and information. Analyses were performed for baseline conditions and specific management and planning scenarios to improve water quantity and quality at micro-, meso- and macro-scale. The results of the study indicate that substantial, expensive water and land management changes at different scales would be necessary to achieve the WFD water quality targets in this basin. Ecological-economic analysis of cost-effectiveness reveals that the costs of achieving certain goals of the WFD can vary more than tenfold depending on which measure is chosen out of the pool of management alternatives. Moreover, the study shows that the differentiation between landscapes and other regional characteristics although considered essential to the successful implementation of WFD measures is very data intensive.

[1]  Valentina Krysanova,et al.  Assessment of nitrogen leaching from arable land in large river basins Part I. Simulation experiments using a process-based model , 2002 .

[2]  J. Refsgaard Parameterisation, calibration and validation of distributed hydrological models , 1997 .

[3]  Paul Quinn,et al.  Scale appropriate modelling: representing cause-and-effect relationships in nitrate pollution at the catchment scale for the purpose of catchment scale planning , 2004 .

[4]  Francisco J. Rueda,et al.  Implementing river water quality modelling issues in mesoscale watershed models for water policy demands??an overview on current concepts, deficits, and future tasks , 2004 .

[5]  Murugesu Sivapalan,et al.  Scale issues in hydrological modelling , 1995 .

[6]  Jeffrey G. Arnold,et al.  The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions , 2007 .

[7]  David P. Braun,et al.  A Method for Assessing Hydrologic Alteration within Ecosystems , 1996 .

[8]  R. Young,et al.  AGNPS: A nonpoint-source pollution model for evaluating agricultural watersheds , 1989 .

[9]  Murugesu Sivapalan,et al.  Scale issues in hydrological modelling: A review , 1995 .

[10]  Martin Volk,et al.  Meso-scale landscape analysis based on landscape balance investigations: problems and hierarchical approaches for their resolution , 2003 .

[11]  J. Porter,et al.  Agroecology, scaling and interdisciplinarity , 2003 .

[12]  I. Kowarik Kritische Anmerkungen zum theoretischen Konzept der potentiellen natürlichen Vegetation mit Anregungen zu einer zeitgemässen modifikation , 1987 .

[13]  Tuomo Saloranta,et al.  A conceptual framework for identifying the need and role of models in the implementation of the water framework directive , 2003 .

[14]  Martin Volk,et al.  Landscape Balance and Landscape Assessment , 2001 .

[15]  Jörg Jacobs,et al.  Land use scenario development and stakeholder involvement as tools for watershed management within the Havel River Basin , 2005 .

[16]  R. Aspinall,et al.  A Knowledge-Based Systems Approach to Design of Spatial Decision Support Systems for Environmental Management , 1998, Environmental management.

[17]  J. Arnold,et al.  SWAT2000: current capabilities and research opportunities in applied watershed modelling , 2005 .

[18]  Jetse D. Kalma,et al.  Regional-scale hydrological modelling using multiple-parameter landscape zones and a quasi-distributed water balance model , 2001 .

[19]  Stuart C. Shapiro Review of Knowledge representation: logical, philosophical, and computational foundations by John F. Sowa. Brooks/Cole 2000. , 2001 .

[20]  Mark A. Musen,et al.  The Knowledge Model of Protégé-2000: Combining Interoperability and Flexibility , 2000, EKAW.

[21]  John R. Williams,et al.  LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1 , 1998 .

[22]  Ruud van der Helm Challenging futures studies to enhance EU’s participatory river basin management , 2003 .

[23]  N. Korn,et al.  Flussauen und Wasserrahmenrichtlinie : Bedeutung der Flussauen für die Umsetzung der europäischen Wasserrahmenrichtlinie - Handlungsempfehlungen für Naturschutz und Wasserwirtschaft , 2005 .

[24]  V. Krysanova,et al.  Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds , 1998 .

[25]  Werner Kleinhanß,et al.  Modellgestützte Folgenabschätzung zu den Auswirkungen der Agenda 2000 auf die deutsche Landwirtschaft , 1999 .

[26]  R. D. Groot,et al.  Spatial scales, stakeholders and the valuation of ecosystem services , 2006 .

[27]  Gesellschaft für Ökologie Verhandlungen der Gesellschaft für Oekologie , 1983, Vegetatio.

[28]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[29]  Jörg Dietrich,et al.  Socioeconomic analysis within an interdisciplinary spatial decision support system for an integrated management of the Werra River Basin , 2005 .