The AeroCom evaluation and intercomparison of organic aerosol in global models

Abstract. This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over one order of magnitude exists in the modeled vertical distribution of OA concentrations that deserves a dedicated future study. Furthermore, although the OA / OC ratio depends on OA sources and atmospheric processing, and is important for model evaluation against OA and OC observations, it is resolved only by a few global models. The median global primary OA (POA) source strength is 56 Tg a−1 (range 34–144 Tg a−1) and the median SOA source strength (natural and anthropogenic) is 19 Tg a−1 (range 13–121 Tg a−1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a−1 (range 16–121 Tg a−1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a−1; range 13–20 Tg a−1, with one model at 37 Tg a−1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6–2.0 Tg and 4 between 2.0 and 3.8 Tg), with a median OA lifetime of 5.4 days (range 3.8–9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a−1 (range 28–209 Tg a−1), which is on average 85% of the total OA deposition. Fine aerosol organic carbon (OC) and OA observations from continuous monitoring networks and individual field campaigns have been used for model evaluation. At urban locations, the model–observation comparison indicates missing knowledge on anthropogenic OA sources, both strength and seasonality. The combined model–measurements analysis suggests the existence of increased OA levels during summer due to biogenic SOA formation over large areas of the USA that can be of the same order of magnitude as the POA, even at urban locations, and contribute to the measured urban seasonal pattern. Global models are able to simulate the high secondary character of OA observed in the atmosphere as a result of SOA formation and POA aging, although the amount of OA present in the atmosphere remains largely underestimated, with a mean normalized bias (MNB) equal to −0.62 (−0.51) based on the comparison against OC (OA) urban data of all models at the surface, −0.15 (+0.51) when compared with remote measurements, and −0.30 for marine locations with OC data. The mean temporal correlations across all stations are low when compared with OC (OA) measurements: 0.47 (0.52) for urban stations, 0.39 (0.37) for remote stations, and 0.25 for marine stations with OC data. The combination of high (negative) MNB and higher correlation at urban stations when compared with the low MNB and lower correlation at remote sites suggests that knowledge about the processes that govern aerosol processing, transport and removal, on top of their sources, is important at the remote stations. There is no clear change in model skill with increasing model complexity with regard to OC or OA mass concentration. However, the complexity is needed in models in order to distinguish between anthropogenic and natural OA as needed for climate mitigation, and to calculate the impact of OA on climate accurately.

Gabriele Curci | Johannes W. Kaiser | Michael Schulz | Alma Hodzic | Mian Chin | Steven J. Ghan | Nicolas Bellouin | Angela Benedetti | Toshihiko Takemura | Kai Zhang | Thomas Diehl | Johan P. Beukes | P. G. van Zyl | Shantanu H. Jathar | Harri Kokkola | Fangqun Yu | Sanford Sillman | Ragnhild Bieltvedt Skeie | Kostas Tsigaridis | Maria Kanakidou | Jean Sciare | Simone Tilmes | Drew T. Shindell | Trissevgeni Stavrakou | Peter J. Adams | Kenneth S. Carslaw | Holger Tost | Stephen D. Steenrod | Trond Iversen | Øyvind Seland | Paulo Artaxo | Nikolaos Mihalopoulos | Jose L. Jimenez | Gunnar Myhre | Richard C. Easter | Xiaohong Liu | Dominick V. Spracklen | Xiaoyan Ma | M. Chin | T. Diehl | S. Ghan | J. Penner | P. Adams | A. Kirkevåg | T. Berntsen | S. Tilmes | S. Bauer | D. Koch | D. Shindell | K. Tsigaridis | K. Salzen | R. Bahadur | J. Morcrette | Xiaohong Liu | T. Takemura | J. Müller | T. Stavrakou | T. Iversen | G. Lin | A. Hodzic | J. Jimenez | R. Skeie | G. Myhre | S. Sillman | M. Schulz | A. Benedetti | Y. Balkanski | P. Artaxo | T. Noije | Y. Lee | J. Kaiser | P. Zyl | J. Beukes | N. Bellouin | Ø. Seland | Q. Zhang | C. Hoyle | K. Carslaw | K. Pringle | D. Spracklen | Kai Zhang | R. Easter | H. Tost | T. Bergman | H. Kokkola | F. Yu | G. Luo | N. Mihalopoulos | H. Bian | Xiaoyan Ma | Zhili Wang | G. Curci | X. Zhang | D. O'Donnell | S. Gong | L. Pozzoli | R. Zaveri | G. Mann | M. Kanakidou | J. Sciare | L. Russell | S. Myriokefalitakis | N. Ng | P. Tiitta | Rahul A. Zaveri | T. P. C. van Noije | Yves Balkanski | Lynn M. Russell | Nga L. Ng | Alf Kirkevåg | Kirsty J. Pringle | Christopher R. Hoyle | J.-F. Müller | Dorothy Koch | Terje Berntsen | Y. H. Lee | Huisheng Bian | N. Daskalakis | S. Jathar | S. Steenrod | Hualong Zhang | Ranjit Bahadur | K. von Salzen | J. E. Penner | J.-J. Morcrette | Nikos Daskalakis | Susanne E. Bauer | S. L. Gong | Zhili Wang | Gan Luo | Petri Tiitta | Guangxing Lin | Tommi Bergman | Stelios Myriokefalitakis | Q. Zhang | Graham Mann | Luca Pozzoli | D. O'Donnell | Hualong Zhang | X. Zhang | D. O’Donnell | J. Jimenez | J.‐F. Müller | Q. Zhang

[1]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[2]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[3]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[4]  M. Chipperfield,et al.  New version of the TOMCAT/SLIMCAT off‐line chemical transport model: Intercomparison of stratospheric tracer experiments , 2006 .

[5]  J. Seinfeld,et al.  A global perspective on aerosol from low-volatility organic compounds , 2010 .

[6]  Mar Viana,et al.  Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol , 2009 .

[7]  Johannes W. Kaiser,et al.  Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System : Forward modeling , 2009 .

[8]  M. Chin,et al.  Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity , 2008 .

[9]  S. Compernolle,et al.  Parameterising secondary organic aerosol from α-pinene using a detailed oxidation and aerosol formation model , 2011 .

[10]  M. Schultz,et al.  Trace gas and aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ: 1. Model description and insights from the spring 2001 TRACE-P experiment , 2008 .

[11]  J. Jimenez,et al.  Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data , 2012 .

[12]  Spyros N. Pandis,et al.  Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area , 2009 .

[13]  D. Fahey,et al.  Atmospheric Chemistry and Physics Modelled Radiative Forcing of the Direct Aerosol Effect with Multi-observation Evaluation , 2022 .

[14]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[15]  R. Harrison,et al.  Indoor/outdoor relationships of organic carbon (OC) and elemental carbon (EC) in PM2.5 in roadside environment of Hong Kong , 2004 .

[16]  P. Bousquet,et al.  Tropospheric aerosol ionic composition in the Eastern Mediterranean region , 1997 .

[17]  Qi Zhang,et al.  Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes , 2007 .

[18]  Hans-Christen Hansson,et al.  Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility , 1999 .

[19]  C. O'Dowd,et al.  Global Modeling of the Oceanic Source of Organic Aerosols , 2010 .

[20]  Maria Cristina Facchini,et al.  Important source of marine secondary organic aerosol from biogenic amines. , 2008, Environmental science & technology.

[21]  Donald Dabdub,et al.  Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons , 1999 .

[22]  D. Koch,et al.  Uncertainties and importance of sea spray composition on aerosol direct and indirect effects , 2013 .

[23]  S. Howell,et al.  Organic matter and non-refractory aerosol over the remote Southeast Pacific: oceanic and combustion sources , 2011 .

[24]  A L Robinson,et al.  Coupled partitioning, dilution, and chemical aging of semivolatile organics. , 2006, Environmental science & technology.

[25]  G. Sheng,et al.  Composition, source, mass closure of PM2.5 aerosols for four forests in eastern China. , 2010, Journal of environmental sciences.

[26]  R. Bahadur,et al.  Climatology of PM2.5 organic carbon concentrations from a review of ground-based atmospheric measurements by evolved gas analysis , 2009 .

[27]  U. Lohmann,et al.  Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM , 2010 .

[28]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[29]  Rajasekhar Balasubramanian,et al.  Comprehensive characterization of PM2.5 aerosols in Singapore , 2003 .

[30]  Yan Feng,et al.  Uncertainties in global aerosol simulations: Assessment using three meteorological data sets , 2007 .

[31]  F. Yu,et al.  Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN number concentrations , 2009 .

[32]  J. Schauer,et al.  Aerosol chemical, physical, and radiative characteristics near a desert source region of northwest China during ACE‐Asia , 2004 .

[33]  M. Petters,et al.  A review of the anthropogenic influence on biogenic secondary organic aerosol , 2011 .

[34]  P. Mcmurry,et al.  Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study , 2000 .

[35]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[36]  A. Goldstein,et al.  Known and Unexplored Organic Constituents in the Earth's Atmosphere , 2007 .

[37]  S. Madronich,et al.  Limited influence of dry deposition of semivolatile organic vapors on secondary organic aerosol formation in the urban plume , 2013 .

[38]  Peter H. Stone,et al.  Efficient Three-Dimensional Global Models for Climate Studies: Models I and II , 1983 .

[39]  Soon-Chang Yoon,et al.  Air mass characterization and source region analysis for the Gosan super-site, Korea, during the ACE-Asia 2001 field campaign , 2005 .

[40]  P. Adams,et al.  Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations , 2009 .

[41]  John H. Seinfeld,et al.  Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations , 2007 .

[42]  Zhongping Shen,et al.  Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system , 2012, Climate Dynamics.

[43]  Delbert J. Eatough,et al.  Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge , 2003 .

[44]  Patrick Jöckel,et al.  Atmospheric Chemistry and Physics Technical Note: the Modular Earth Submodel System (messy) – a New Approach towards Earth System Modeling , 2022 .

[45]  J. Chow,et al.  PM[sub 10] and PM[sub 2. 5] compositions in California's San Joaquin Valley , 1993 .

[46]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[47]  K. Carslaw,et al.  Globally significant oceanic source of organic carbon aerosol , 2008 .

[48]  K. Salzen Piecewise log-normal approximation of size distributions for aerosol modelling , 2005 .

[49]  G. Hidy,et al.  The Southeastern Aerosol Research and Characterization Study: Part 1—Overview , 2003, Journal of the Air & Waste Management Association.

[50]  W. Collins,et al.  An AeroCom initial assessment – optical properties in aerosol component modules of global models , 2018 .

[51]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[52]  Axel Lauer,et al.  The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment , 2007 .

[53]  Edward O. Edney,et al.  Thermal properties of secondary organic aerosols , 2006 .

[54]  A. Arneth,et al.  Terrestrial biogeochemical feedbacks in the climate system , 2010 .

[55]  Chemical characterization of outdoor PM2.5 and gas-phase compounds in Mira Loma, California , 2004 .

[56]  J. Penner,et al.  Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000 , 2005 .

[57]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[58]  S. Pandis,et al.  Evaluation of secondary organic aerosol formation in winter , 1999 .

[59]  Hajime Okamoto,et al.  Global three‐dimensional simulation of aerosol optical thickness distribution of various origins , 2000 .

[60]  P. Bhave,et al.  To what extent can biogenic SOA be controlled? , 2008, Environmental science & technology.

[61]  G. Mann,et al.  Intercomparison and evaluation of aerosol microphysical properties among AeroCom global models of a range of complexity , 2013 .

[62]  Jean-Francois Lamarque,et al.  Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change , 2008 .

[63]  T. Berntsen,et al.  Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2 , 2007 .

[64]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[65]  Timo Mäkelä,et al.  Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean , 2008 .

[66]  D. Eatough,et al.  The measurement of PM2.5, including semi-volatile components, in the EMPACT program: results from the Salt Lake City Study , 2003 .

[67]  Shian-Jiann Lin,et al.  Atmospheric Sulfur Cycle Simulated in the Global Model Gocart: Model Description and Global Properties , 2013 .

[68]  Toshihiko Takemura,et al.  A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum , 2009 .

[69]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[70]  Harshvardhan,et al.  The use of satellite‐measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART , 2012 .

[71]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[72]  T. Berntsen,et al.  Anthropogenic influence on SOA and the resulting radiative forcing , 2008 .

[73]  B M Kim,et al.  Characterization of PM2.5 and PM10 in the South Coast Air Basin of southern California: Part 1--Spatial variations. , 2000, Journal of the Air & Waste Management Association.

[74]  John P. Burrows,et al.  Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols , 2007 .

[75]  Gerard Capes,et al.  Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model , 2011 .

[76]  W. Maenhaut,et al.  Elemental and organic carbon in urban canyon and background environments in Budapest, Hungary , 2004 .

[77]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[78]  D. Ceburnis,et al.  Biogenically driven organic contribution to marine aerosol , 2004, Nature.

[79]  John H. Seinfeld,et al.  Global secondary organic aerosol from isoprene oxidation , 2006 .

[80]  David G. Streets,et al.  Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements , 2009 .

[81]  M. Lazaridis,et al.  Temperature dependent secondary organic aerosol formation from terpenes and aromatics , 2008 .

[82]  S. Kreidenweis,et al.  Satellite observations cap the atmospheric organic aerosol budget , 2010 .

[83]  D. Worsnop,et al.  Chemical composition, main sources and temporal variability of PM 1 aerosols in southern African grassland , 2013 .

[84]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[85]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[86]  D. R. Worsnop,et al.  Evolution of Organic Aerosols in the Atmosphere , 2009, Science.

[87]  Stephen D. Piccot,et al.  A global inventory of volatile organic compound emissions from anthropogenic sources , 1992 .

[88]  P. Adams,et al.  ModelE2-TOMAS development and evaluation using aerosol optical depths, mass and number concentrations , 2014 .

[89]  L. Lee,et al.  Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model , 2012 .

[90]  Erik Swietlicki,et al.  Warming-induced increase in aerosol number concentration likely to moderate climate change , 2013 .

[91]  U. Baltensperger,et al.  Study on the Chemical Character of Water Soluble Organic Compounds in Fine Atmospheric Aerosol at the Jungfraujoch , 2001 .

[92]  J. Brook,et al.  Improved Measurement of Seasonal and Diurnal Differences in the Carbonaceous Components of Urban Particulate Matter Using a Denuder-Based Air Sampler , 2004 .

[93]  Richard Neale,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5 , 2012 .

[94]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[95]  G. Mann,et al.  A review of natural aerosol interactions and feedbacks within the Earth system , 2010 .

[96]  K. Tsigaridis,et al.  Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM , 2011 .

[97]  J. Dufresne,et al.  Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100 , 2013, Climate Dynamics.

[98]  C. Brühl,et al.  The influence of natural and anthropogenic secondary sources on the glyoxal global distribution , 2008 .

[99]  Philip Stier,et al.  Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1) , 2010 .

[100]  J. Peñuelas,et al.  Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data , 2011 .

[101]  J. Lelieveld,et al.  Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides , 2012 .

[102]  John H. Seinfeld,et al.  Predicting global aerosol size distributions in general circulation models , 2002 .

[103]  Martin Gysel,et al.  Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland , 2005 .

[104]  Kostas Tsigaridis,et al.  Secondary organic aerosol importance in the future atmosphere , 2007 .

[105]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[106]  Robert McLaren,et al.  Reactive uptake of glyoxal by particulate matter , 2005 .

[107]  S. Pandis,et al.  Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies , 2012 .

[108]  Continuous Determination of PM2.5 Mass, Including Semi-Volatile Species , 2001 .

[109]  D. Hauglustaine,et al.  Naturally driven variability in the global secondary organic aerosol over a decade , 2005 .

[110]  P. Galan,et al.  Characterization and sources assignation of PM2.5 organic aerosol in a rural area of Spain , 2009 .

[111]  Allen L Robinson,et al.  Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging , 2007, Science.

[112]  M. Chin,et al.  Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations , 2012 .

[113]  Measurement of real-time PM2.5 mass, sulfate, and carbonaceous aerosols at the multiple monitoring sites , 2004 .

[114]  A. Robinson,et al.  A naming convention for atmospheric organic aerosol , 2013 .

[115]  Kenneth A. Smith,et al.  Aerosol mass spectrometer for size and composition analysis of submicron particles , 1998 .

[116]  Qi Zhang,et al.  An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol , 2011 .

[117]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[118]  J. Randerson,et al.  Carbon emissions from fires in tropical and subtropical ecosystems , 2003 .

[119]  J. Burrows,et al.  The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling , 2009 .

[120]  Peter Bergamaschi,et al.  The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0 , 2010 .

[121]  Y. J. Kim,et al.  Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002 , 2004 .

[122]  B. Turpin,et al.  Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase , 2013 .

[123]  P. Adams,et al.  A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model , 2012 .

[124]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[125]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[126]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[127]  R. Harrison,et al.  Concentrations of particulate airborne polycyclic aromatic hydrocarbons and metals collected in Lahore, Pakistan , 1996 .

[128]  R. Sarda-Estève,et al.  Long-term observations of carbonaceous aerosols in the Austral Ocean atmosphere: Evidence of a biogenic marine organic source , 2009 .

[129]  G. Mann,et al.  Aerosol mass spectrometer constraint on the global secondary organic aerosol budget , 2011 .

[130]  M. Molina,et al.  Atmospheric evolution of organic aerosol , 2004 .

[131]  U. Lohmann,et al.  The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations , 2012 .

[132]  J. Branham,et al.  Alternatives to least squares , 1982 .

[133]  Tami C. Bond,et al.  Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change , 2005 .

[134]  T. Diehl,et al.  Reanalysis of tropospheric sulphate aerosol and ozone for the period 1980-2005 using the aerosol-chemistry-climate model ECHAM5-HAMMOZ , 2011 .

[135]  J. Jimenez,et al.  Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review , 2011, Analytical and bioanalytical chemistry.

[136]  Franz X. Meixner,et al.  Composition and diurnal variability of the natural Amazonian aerosol , 2003 .

[137]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[138]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[139]  C. Prigent,et al.  Mineral dust aerosols in the NASA Goddard Institute for Space Sciences ModelE atmospheric general circulation model , 2006 .

[140]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[141]  Erik Swietlicki,et al.  Organic aerosol and global climate modelling: a review , 2004 .

[142]  D. Hauglustaine,et al.  Change in global aerosol composition since preindustrial times , 2006 .

[143]  John H. Seinfeld,et al.  Organic aerosol formation from the oxidation of biogenic hydrocarbons , 1999 .

[144]  N. Mihalopoulos,et al.  Short-Term Variability of Atmospheric DMS and Its Oxidation Products at Amsterdam Island during Summer Time , 2001 .

[145]  G. Schmidt,et al.  Sulfur, sea salt, and radionuclide aerosols in GISS ModelE , 2006 .

[146]  P. Formenti,et al.  Inorganic and carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000) experiment: Chemical characteristics, physical properties, and emission data for smoke from African biomass burning , 2003 .

[147]  D. Koch,et al.  Global impacts of aerosols from particular source regions and sectors , 2007 .

[148]  N. Meskhidze,et al.  A new physically-based quantification of marine isoprene and primary organic aerosol emissions , 2009 .

[149]  S. Pandis,et al.  Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set , 2011 .

[150]  J. D. de Gouw,et al.  Organic aerosols in the Earth's atmosphere. , 2009, Environmental science & technology.

[151]  N. McFarlane,et al.  The role of shallow convection in the water and energy cycles of the atmosphere , 2005 .

[152]  Y. Q. Wang,et al.  Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols , 2011 .

[153]  Tami C. Bond,et al.  Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000 , 2007 .

[154]  B. Turpin,et al.  Particle partitioning potential of organic compounds is highest in the Eastern US and driven by anthropogenic water , 2013 .

[155]  Harshvardhan Aerosol-climate interactions , 1993 .

[156]  J. Lamarque,et al.  CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model , 2012 .

[157]  J. Penner,et al.  Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution , 2009 .

[158]  J. Seinfeld,et al.  Reactive intermediates revealed in secondary organic aerosol formation from isoprene , 2009, Proceedings of the National Academy of Sciences.

[159]  Barbara J. Turpin,et al.  Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass , 2001 .

[160]  A. Segers,et al.  In-cloud oxalate formation in the global troposphere: a 3-D modeling study , 2011 .

[161]  P. Adams,et al.  Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol , 2010 .

[162]  Mikhail Sofiev,et al.  The European aerosol budget in 2006 , 2010 .

[163]  J. Boman,et al.  Black carbon and total carbon measurements at urban and rural sites in Kenya, East Africa , 2003 .

[164]  S. Madronich,et al.  Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols , 2014 .

[165]  Xuan Zhang,et al.  Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol , 2014, Proceedings of the National Academy of Sciences.

[166]  Qi Zhang,et al.  Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. , 2005, Environmental science & technology.

[167]  R. Ruedy,et al.  MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models , 2008 .

[168]  F. Yu A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds : global scale implications , 2011 .

[169]  B. Turpin,et al.  Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies , 2011 .

[170]  Steven Compernolle,et al.  Modeling aerosol formation in alpha-pinene photo-oxidation experiments , 2008 .

[171]  D. Erickson,et al.  A sea-state based source function for size- and composition-resolved marine aerosol production , 2011 .

[172]  G. Mann,et al.  Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity , 2014 .

[173]  Allen L. Robinson,et al.  A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics , 2010 .

[174]  C. Scannell,et al.  Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment , 2010 .

[175]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[176]  Bong Mann Kim,et al.  Characterization of PM25 and PM10 in the South Coast Air Basin of Southern California: Part 1—Spatial Variations , 2000, Journal of the Air & Waste Management Association.

[177]  Judith C. Chow,et al.  PM2.5 chemical composition and spatiotemporal variability during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) , 2006 .

[178]  Ari Asmi,et al.  SALSA – a Sectional Aerosol module for Large Scale Applications , 2007 .

[179]  Harald Saathoff,et al.  Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α -pinene and limonene , 2008 .

[180]  J. Abbatt,et al.  Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. , 2010, Nature chemistry.

[181]  The Missoula, Montana PM2.5 speciation study—seasonal average concentrations , 2004 .

[182]  M. Andreae,et al.  Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia , 2002 .

[183]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[184]  D. Stevenson,et al.  The Global Distribution of Secondary Particulate Matter in a 3-D Lagrangian Chemistry Transport Model , 2003 .

[185]  M. Chin,et al.  Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO 2 from 1980 to 2010 for hindcast model experiments , 2012 .

[186]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[187]  T. Diehl,et al.  Black carbon vertical profiles strongly affect its radiative forcing uncertainty , 2012 .

[188]  M. Molina,et al.  Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected , 2006 .

[189]  Rainer Volkamer,et al.  Secondary Organic Aerosol Formation from Acetylene (C 2 H 2 ): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase , 2008 .

[190]  Wilco Hazeleger,et al.  Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth , 2014 .

[191]  Michael Schulz,et al.  Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M , 2012 .

[192]  R. Griffin,et al.  Characteristics and Sources of Carbonaceous, Ionic, and Isotopic Species of Wintertime Atmospheric Aerosols in Kathmandu Valley, Nepal , 2010 .

[193]  O. Boucher,et al.  Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate , 2011 .

[194]  Mian Chin,et al.  Sources of carbonaceous aerosols over the United States and implications for natural visibility , 2003 .

[195]  J. Seinfeld,et al.  Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene , 2009, Science.

[196]  Kostas Tsigaridis,et al.  Atmospheric Chemistry and Physics Global Modelling of Secondary Organic Aerosol in the Troposphere: a Sensitivity Analysis , 2003 .

[197]  T. Nakajima,et al.  Modeling study of long‐range transport of Asian dust and anthropogenic aerosols from East Asia , 2002 .

[198]  K. Lehtinen,et al.  Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model , 2011 .

[199]  Qi Zhang,et al.  O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. , 2008, Environmental science & technology.

[200]  Qiang Fu,et al.  Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations , 2009 .

[201]  R. Martin,et al.  Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon , 2014 .

[202]  Gerhard Krinner,et al.  Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model , 2005 .

[203]  S. Madronich,et al.  Modeling organic aerosols in a megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation , 2010 .

[204]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[205]  Ann M. Middlebrook,et al.  Single-particle mass spectrometry of tropospheric aerosol particles , 2006 .

[206]  N. Mahowald,et al.  Atmospheric fluxes of organic N and P to the global ocean , 2012 .