Molecular motors and mechanisms of directional transport in neurons

[1]  W. Greenough,et al.  Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  N. Hirokawa,et al.  Kinesin superfamily proteins and their various functions and dynamics. , 2004, Experimental cell research.

[3]  Russell L. Malmberg,et al.  A standardized kinesin nomenclature , 2004, The Journal of cell biology.

[4]  Nobutaka Hirokawa,et al.  Molecular motors in neuronal development, intracellular transport and diseases , 2004, Current Opinion in Neurobiology.

[5]  Nobutaka Hirokawa,et al.  Kinesin Transports RNA Isolation and Characterization of an RNA-Transporting Granule , 2004, Neuron.

[6]  A. Le Bivic,et al.  Epithelial trafficking: new routes to familiar places. , 2004, Current opinion in cell biology.

[7]  Ryo Nitta,et al.  KIF1A Alternately Uses Two Loops to Bind Microtubules , 2004, Science.

[8]  G. Pigino,et al.  A novel CDK5‐dependent pathway for regulating GSK3 activity and kinesin‐driven motility in neurons , 2004, The EMBO journal.

[9]  K. Kaibuchi,et al.  Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity , 2004, Nature Cell Biology.

[10]  N. Hirokawa,et al.  A Common Mechanism for Microtubule Destabilizers—M Type Kinesins Stabilize Curling of the Protofilament Using the Class-Specific Neck and Loops , 2004, Cell.

[11]  R. Vallee,et al.  Dynein: An ancient motor protein involved in multiple modes of transport. , 2004, Journal of neurobiology.

[12]  Lynne Regan,et al.  TPR proteins: the versatile helix. , 2003, Trends in biochemical sciences.

[13]  J. Bonifacino,et al.  Signals for sorting of transmembrane proteins to endosomes and lysosomes. , 2003, Annual review of biochemistry.

[14]  L. D’Adamio,et al.  Amyloid β Protein Precursor (AβPP), but Not AβPP-like Protein 2, Is Bridged to the Kinesin Light Chain by the Scaffold Protein JNK-interacting Protein 1* , 2003, Journal of Biological Chemistry.

[15]  Nobutaka Hirokawa,et al.  Biochemical and molecular characterization of diseases linked to motor proteins. , 2003, Trends in biochemical sciences.

[16]  J. Carson,et al.  A Molecular Mechanism for mRNA Trafficking in Neuronal Dendrites , 2003, The Journal of Neuroscience.

[17]  N. Hirokawa,et al.  Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head , 2003, The Journal of cell biology.

[18]  Y. Jan,et al.  A Conserved Domain in Axonal Targeting of Kv1 (Shaker) Voltage-Gated Potassium Channels , 2003, Science.

[19]  Hideo Higuchi,et al.  Processivity of the single-headed kinesin KIF1A through biased binding to tubulin , 2003, Nature.

[20]  S. Lambert,et al.  Identification of a Conserved Ankyrin-binding Motif in the Family of Sodium Channel α Subunits* , 2003, Journal of Biological Chemistry.

[21]  N. Hirokawa,et al.  Kinesin Superfamily Protein 2A (KIF2A) Functions in Suppression of Collateral Branch Extension , 2003, Cell.

[22]  Juan José Garrido,et al.  A Targeting Motif Involved in Sodium Channel Clustering at the Axonal Initial Segment , 2003, Science.

[23]  K. Miyazawa,et al.  A Scaffold Protein JIP-1b Enhances Amyloid Precursor Protein Phosphorylation by JNK and Its Association with Kinesin Light Chain 1* , 2003, Journal of Biological Chemistry.

[24]  P. Stanton,et al.  Activity-Dependent Trafficking and Dynamic Localization of Zipcode Binding Protein 1 and β-Actin mRNA in Dendrites and Spines of Hippocampal Neurons , 2003, The Journal of Neuroscience.

[25]  B. Strooper,et al.  Aph-1, Pen-2, and Nicastrin with Presenilin Generate an Active γ-Secretase Complex , 2003, Neuron.

[26]  K. Mostov,et al.  Polarized epithelial membrane traffic: conservation and plasticity , 2003, Nature Cell Biology.

[27]  R. Weinberg,et al.  Association of the Kinesin Motor KIF1A with the Multimodular Protein Liprin-α* , 2003, The Journal of Biological Chemistry.

[28]  A. Chishti,et al.  Direct Interaction with a Kinesin-related Motor Mediates Transport of Mammalian Discs Large Tumor Suppressor Homologue in Epithelial Cells* , 2003, The Journal of Biological Chemistry.

[29]  Don B. Arnold,et al.  An evolutionarily conserved dileucine motif in Shal K+ channels mediates dendritic targeting , 2003, Nature Neuroscience.

[30]  S. Kaech,et al.  Two Distinct Mechanisms Target Membrane Proteins to the Axonal Surface , 2003, Neuron.

[31]  R. Singer,et al.  Real-Time Visualization of ZBP1 Association with β-Actin mRNA during Transcription and Localization , 2003, Current Biology.

[32]  N. Hirokawa,et al.  KIF17 Dynamics and Regulation of NR2B Trafficking in Hippocampal Neurons , 2003, The Journal of Neuroscience.

[33]  N. Hirokawa,et al.  Mouse models of Charcot-Marie-Tooth disease. , 2002, Trends in genetics : TIG.

[34]  D. Johnston,et al.  Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in the Drosophila oocyte , 2002, Development.

[35]  N. Hirokawa,et al.  Overexpression of motor protein KIF17 enhances spatial and working memory in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Bredt,et al.  A combination of three distinct trafficking signals mediates axonal targeting and presynaptic clustering of GAD65 , 2002, The Journal of cell biology.

[37]  Ronald D Vale,et al.  Conversion of Unc104/KIF1A Kinesin into a Processive Motor After Dimerization , 2002, Science.

[38]  N. Hirokawa,et al.  Role of KIFC3 motor protein in Golgi positioning and integration , 2002, The Journal of cell biology.

[39]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[40]  R. Vale,et al.  Role of Phosphatidylinositol(4,5)bisphosphate Organization in Membrane Transport by the Unc104 Kinesin Motor , 2002, Cell.

[41]  N. Hirokawa,et al.  Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites , 2002, Nature.

[42]  R. Duvoisin,et al.  Alternative Splicing Unmasks Dendritic and Axonal Targeting Signals in Metabotropic Glutamate Receptor 1 , 2002, The Journal of Neuroscience.

[43]  M. Sheng,et al.  PDZ Domains: Structural Modules for Protein Complex Assembly* , 2002, The Journal of Biological Chemistry.

[44]  Malgorzata Kloc,et al.  Mechanisms of Subcellular mRNA Localization , 2002, Cell.

[45]  Nancy Ratner,et al.  Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin‐based motility , 2002, The EMBO journal.

[46]  L. Goldstein,et al.  Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP , 2001, Nature.

[47]  J. Eberwine,et al.  Localization and translation of mRNA in dentrites and axons , 2001, Nature Reviews Neuroscience.

[48]  D. Bredt,et al.  Polarized Targeting of Peripheral Membrane Proteins in Neurons* , 2001, The Journal of Biological Chemistry.

[49]  Kenneth S Kosik,et al.  Neuronal RNA Granules A Link between RNA Localization and Stimulation-Dependent Translation , 2001, Neuron.

[50]  M. Fache,et al.  Identification of an axonal determinant in the C‐terminus of the sodium channel Nav1.2 , 2001, The EMBO journal.

[51]  N. Hirokawa,et al.  KIFC3, a microtubule minus end–directed motor for the apical transport of annexin XIIIb–associated Triton-insoluble membranes , 2001, The Journal of cell biology.

[52]  E. Holzbaur,et al.  βIII Spectrin Binds to the Arp1 Subunit of Dynactin* , 2001, The Journal of Biological Chemistry.

[53]  Lawrence S. B. Goldstein,et al.  Functional Analysis of Mouse Kinesin Motor Kif3C , 2001, Molecular and Cellular Biology.

[54]  N. Hirokawa,et al.  All kinesin superfamily protein, KIF, genes in mouse and human , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Garner,et al.  Identification of a cis‐acting dendritic targeting element in the mRNA encoding the alpha subunit of Ca2+/calmodulin‐dependent protein kinase II , 2001, The European journal of neuroscience.

[56]  J. Blenis,et al.  Cargo of Kinesin Identified as Jip Scaffolding Proteins and Associated Signaling Molecules , 2001, The Journal of cell biology.

[57]  N. Hirokawa,et al.  Charcot-Marie-Tooth Disease Type 2A Caused by Mutation in a Microtubule Motor KIF1Bβ , 2001, Cell.

[58]  P. Worley,et al.  Dendritic and Axonal Targeting of Type 5 Metabotropic Glutamate Receptor Is Regulated by Homer1 Proteins and Neuronal Excitation , 2000, The Journal of Neuroscience.

[59]  L. Goldstein,et al.  Kinesin-Dependent Axonal Transport Is Mediated by the Sunday Driver (SYD) Protein , 2000, Cell.

[60]  N. Hirokawa,et al.  A Novel Motor, KIF13A, Transports Mannose-6-Phosphate Receptor to Plasma Membrane through Direct Interaction with AP-1 Complex , 2000, Cell.

[61]  M. Tohyama,et al.  Two cis-acting elements in the 3′ untranslated region of α-CaMKII regulate its dendritic targeting , 2000, Nature Neuroscience.

[62]  L. Goldstein,et al.  Axonal Transport of Amyloid Precursor Protein Is Mediated by Direct Binding to the Kinesin Light Chain Subunit of Kinesin-I , 2000, Neuron.

[63]  R. Davis,et al.  Signal Transduction by the JNK Group of MAP Kinases , 2000, Cell.

[64]  N. Hirokawa,et al.  Oligomeric Tubulin in Large Transporting Complex Is Transported via Kinesin in Squid Giant Axons , 2000, Cell.

[65]  W. Schneider,et al.  The Reelin Receptor ApoER2 Recruits JNK-interacting Proteins-1 and -2* , 2000, The Journal of Biological Chemistry.

[66]  Daniel Chui,et al.  Genetic Evidence for Selective Transport of Opsin and Arrestin by Kinesin-II in Mammalian Photoreceptors , 2000, Cell.

[67]  R. Huganir,et al.  PDZ domains in synapse assembly and signalling. , 2000, Trends in cell biology.

[68]  N. Hirokawa,et al.  Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. , 2000, Science.

[69]  S. Seiler,et al.  Cargo binding and regulatory sites in the tail of fungal conventional kinesin , 2000, Nature Cell Biology.

[70]  J. D. McGaugh,et al.  Inhibition of Activity-Dependent Arc Protein Expression in the Rat Hippocampus Impairs the Maintenance of Long-Term Potentiation and the Consolidation of Long-Term Memory , 2000, The Journal of Neuroscience.

[71]  B. Bierer,et al.  Eb1 Proteins Regulate Microtubule Dynamics, Cell Polarity, and Chromosome Stability , 2000, The Journal of cell biology.

[72]  Susanne E. Ahmari,et al.  Assembly of presynaptic active zones from cytoplasmic transport packets , 2000, Nature Neuroscience.

[73]  G. Banker,et al.  The Role of Selective Transport in Neuronal Protein Sorting , 2000, Neuron.

[74]  C. Kaether,et al.  Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. , 2000, Molecular biology of the cell.

[75]  Nobutaka Hirokawa,et al.  Kinesin Superfamily Protein 3 (Kif3) Motor Transports Fodrin-Associating Vesicles Important for Neurite Building , 2000, The Journal of cell biology.

[76]  E. Welker,et al.  Spatial, temporal and subcellular localization of islet‐brain 1 (IB1), a homologue of JIP‐1, in mouse brain , 2000, The European journal of neuroscience.

[77]  M Dickens,et al.  Interaction of a Mitogen-Activated Protein Kinase Signaling Module with the Neuronal Protein JIP3 , 2000, Molecular and Cellular Biology.

[78]  James S Trimmer,et al.  A Novel Targeting Signal for Proximal Clustering of the Kv2.1 K+ Channel in Hippocampal Neurons , 2000, Neuron.

[79]  N. Hirokawa Stirring up Development with the Heterotrimeric Kinesin KIF3 , 2000, Traffic.

[80]  N. Hirokawa,et al.  KIF5C, a novel neuronal kinesin enriched in motor neurons. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  B. Margolis,et al.  Interaction of c-Jun Amino-terminal Kinase Interacting Protein-1 with p190 rhoGEF and Its Localization in Differentiated Neurons* , 1999, The Journal of Biological Chemistry.

[82]  Kenji Sugiyama,et al.  JSAP1, a Novel Jun N-Terminal Protein Kinase (JNK)-Binding Protein That Functions as a Scaffold Factor in the JNK Signaling Pathway , 1999, Molecular and Cellular Biology.

[83]  G. Blatch,et al.  The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[84]  D. Richter,et al.  Identification of a cis-Acting Dendritic Targeting Element in MAP2 mRNAs , 1999, The Journal of Neuroscience.

[85]  T. Willnow,et al.  Lipoprotein receptors: new roles for ancient proteins , 1999, Nature Cell Biology.

[86]  Roger J. Davis,et al.  The JIP Group of Mitogen-Activated Protein Kinase Scaffold Proteins , 1999, Molecular and Cellular Biology.

[87]  Ramin Homayouni,et al.  Reelin Is a Ligand for Lipoprotein Receptors , 1999, Neuron.

[88]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1999, Cell.

[89]  U. Wolfrum,et al.  Rhodopsin’s Carboxy-Terminal Cytoplasmic Tail Acts as a Membrane Receptor for Cytoplasmic Dynein by Binding to the Dynein Light Chain Tctex-1 , 1999, Cell.

[90]  D. Bredt,et al.  Characterization of MALS/Velis-1, -2, and -3: a Family of Mammalian LIN-7 Homologs Enriched at Brain Synapses in Association with the Postsynaptic Density-95/NMDA Receptor Postsynaptic Complex , 1999, The Journal of Neuroscience.

[91]  N. Hirokawa,et al.  Left-Right Asymmetry and Kinesin Superfamily Protein KIF3A: New Insights in Determination of Laterality and Mesoderm Induction by kif3A− /− Mice Analysis , 1999, The Journal of cell biology.

[92]  J. Weiner,et al.  Novel Dendritic Kinesin Sorting Identified by Different Process Targeting of Two Related Kinesins: KIF21A and KIF21B , 1999, The Journal of cell biology.

[93]  A. Craig,et al.  Axon/Dendrite Targeting of Metabotropic Glutamate Receptors by Their Cytoplasmic Carboxy-Terminal Domains , 1999, Neuron.

[94]  N. Hirokawa,et al.  A processive single-headed motor: kinesin superfamily protein KIF1A. , 1999, Science.

[95]  T. Kirchhausen Adaptors for clathrin-mediated traffic. , 1999, Annual review of cell and developmental biology.

[96]  M. Schliwa,et al.  Universal and Unique Features of Kinesin Motors: Insights from a Comparison of Fungal and Animal Conventional Kinesins , 1999, Biological chemistry.

[97]  T. Rapoport,et al.  Light Chain– dependent Regulation of Kinesin's Interaction with Microtubules , 1998, Journal of Cell Biology.

[98]  J. Mackay,et al.  The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. , 1998, Biochemistry.

[99]  Sunjong Kwon,et al.  RNA trafficking in myelinating cells , 1998, Current Opinion in Neurobiology.

[100]  Stuart K. Kim,et al.  LIN-10 Is a Shared Component of the Polarized Protein Localization Pathways in Neurons and Epithelia , 1998, Cell.

[101]  T. Südhof,et al.  A Tripartite Protein Complex with the Potential to Couple Synaptic Vesicle Exocytosis to Cell Adhesion in Brain , 1998, Cell.

[102]  T. Kirchhausen,et al.  The Neural Cell Adhesion Molecule L1 Interacts with the AP-2 Adaptor and Is Endocytosed via the Clathrin-Mediated Pathway , 1998, The Journal of Neuroscience.

[103]  N. Hirokawa,et al.  Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria , 1998, Cell.

[104]  G. Banker,et al.  The Polarized Sorting of Membrane Proteins Expressed in Cultured Hippocampal Neurons Using Viral Vectors , 1998, Neuron.

[105]  N. Hirokawa,et al.  Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice , 1998, The Journal of cell biology.

[106]  L. Goldstein,et al.  Kinesin Light Chains Are Essential for Axonal Transport in Drosophila , 1998, The Journal of cell biology.

[107]  N. Hirokawa,et al.  Golgi Vesiculation and Lysosome Dispersion in Cells Lacking Cytoplasmic Dynein , 1998, The Journal of cell biology.

[108]  T. Curran,et al.  Reeler: new tales on an old mutant mouse , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[109]  N. Hirokawa,et al.  Visualization of the Dynamics of Synaptic Vesicle and Plasma Membrane Proteins in Living Axons , 1998, The Journal of cell biology.

[110]  L. Goldstein,et al.  Characterization of the KIF3C neural kinesin-like motor from mouse. , 1998, Molecular biology of the cell.

[111]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[112]  R. Neve,et al.  Identification of a Somatodendritic Targeting Signal in the Cytoplasmic Domain of the Transferrin Receptor , 1997, The Journal of Neuroscience.

[113]  K. Kosik,et al.  Suppression of KIF2 in PC12 Cells Alters the Distribution of a Growth Cone Nonsynaptic Membrane Receptor and Inhibits Neurite Extension , 1997, The Journal of cell biology.

[114]  Richard L. Huganir,et al.  GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors , 1997, Nature.

[115]  N. Hirokawa,et al.  KIFC2 Is a Novel Neuron-Specific C-Terminal Type Kinesin Superfamily Motor for Dendritic Transport of Multivesicular Body-Like Organelles , 1997, Neuron.

[116]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[117]  S. Karki,et al.  Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles , 1996, The Journal of cell biology.

[118]  D. Pfaff,et al.  Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane , 1996, Current Biology.

[119]  N. Hirokawa,et al.  Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[120]  J. Moore,et al.  Kinesin proteins: A phylum of motors for microtubule‐based motility , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[121]  R. Kelly,et al.  Endocytosis of VAMP is facilitated by a synaptic vesicle targeting signal , 1996, The Journal of cell biology.

[122]  N. Hirokawa,et al.  Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons , 1996, The Journal of cell biology.

[123]  N. Hirokawa,et al.  Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport , 1995, The Journal of cell biology.

[124]  G. Steinberg,et al.  The Neurospora organelle motor: a distant relative of conventional kinesin with unconventional properties. , 1995, Molecular biology of the cell.

[125]  N. Hirokawa,et al.  KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport , 1995, The Journal of cell biology.

[126]  N. Hirokawa,et al.  The neuron-specific kinesin superfamily protein KIF1A is a uniqye monomeric motor for anterograde axonal transport of synaptic vesicle precursors , 1995, Cell.

[127]  N. Hirokawa,et al.  KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B , 1995, The Journal of cell biology.

[128]  N. Hirokawa,et al.  Sorting mechanisms of Tau and MAP2 in neurons: Suppressed axonal transit of MAP2 and locally regulated microtubule binding , 1995, Neuron.

[129]  N. Hirokawa,et al.  KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria , 1994, Cell.

[130]  N. Hirokawa,et al.  A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally , 1994, The Journal of cell biology.

[131]  N. Hirokawa,et al.  Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons , 1992, Nature.

[132]  N. Hirokawa,et al.  Kinesin family in murine central nervous system , 1992, The Journal of cell biology.

[133]  N. Hirokawa,et al.  The phosphorylation of kinesin regulates its binding to synaptic vesicles. , 1992, The Journal of biological chemistry.

[134]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[135]  N. Hirokawa,et al.  Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo , 1990, The Journal of cell biology.

[136]  N. Hirokawa,et al.  Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA , 1989, The Journal of cell biology.

[137]  N. Hirokawa,et al.  Rapid turnover of microtubule-associated protein MAP2 in the axon revealed by microinjection of biotinylated MAP2 into cultured neurons. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[138]  G. Bloom,et al.  Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration , 1989, Cell.

[139]  G. Banker,et al.  Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[140]  R. Vallee,et al.  Microtubule-associated protein 1C from brain is a two-headed cytosolic dynein , 1988, Nature.

[141]  K. Meiri,et al.  Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[142]  Michael P. Sheetz,et al.  Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility , 1985, Cell.

[143]  Scott T. Brady,et al.  A novel brain ATPase with properties expected for the fast axonal transport motor , 1985, Nature.

[144]  N. Hirokawa,et al.  Cross-linker system between neurofilaments, microtubules and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method , 1982, The Journal of cell biology.

[145]  P. Burton,et al.  Polarity of axoplasmic microtubules in the olfactory nerve of the frog. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[146]  B. Grafstein,et al.  Intracellular transport in neurons. , 1980, Physiological reviews.