Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires

Heterojunction and superlattice formation is essential for many potential applications of semiconductor nanowires in nanoscale optoelectronics. We have developed a hybrid pulsed laser ablation/chemical capor deposition (PLA-CVD) process for the synthesis of semiconductor nanowires with longitudinal ordered heterostructures. The laser ablation process generates a programmable pulsed vapor source, which enables the nanowire growth in a block-by-block fashion with a well-defined compositional profile along the wire axis. Single-crystalline nanowires with longitudinal Si/SiGe superlattice structure have been successfully synthesized. This unique class of heterostructured one-dimensional nanostructures holds great potential in applications such as light emitting devices and thermoelectrics.

[1]  Xie Hong-kun,et al.  Nature of Science , 2002 .

[2]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[3]  F. Favier,et al.  Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays , 2001, Science.

[4]  P. A. Smith,et al.  Layer-by-Layer Assembly of Rectifying Junctions in and on Metal Nanowires † , 2001 .

[5]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[6]  R. Penner,et al.  Phase separation in AlxGa1-xAs nanowhiskers grown by the solution-liquid-solid mechanism. , 2001, Journal of the American Chemical Society.

[7]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[8]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[9]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[10]  M. Dresselhaus,et al.  Experimental proof-of-principle investigation of enhanced Z[sub 3D]T in (001) oriented Si/Ge superlattices , 2000 .

[11]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[12]  Takaaki Koga,et al.  Carrier pocket engineering applied to “strained” Si/Ge superlattices to design useful thermoelectric materials , 1999 .

[13]  Iijima,et al.  Heterostructures of single-walled carbon nanotubes and carbide nanorods , 1999, Science.

[14]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[15]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[16]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[17]  T. Katsuyama,et al.  Polarization dependence of light emitted from GaAs p‐n junctions in quantum wire crystals , 1994 .

[18]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[19]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[20]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[21]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .