Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase.

[1]  H. Berg Random Walks in Biology , 2018 .

[2]  A. E. Senior,et al.  ATP synthesis by oxidative phosphorylation. , 1988, Physiological reviews.

[3]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[4]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[5]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[6]  P. Tavan,et al.  Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force , 1996, Science.

[7]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[8]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[9]  W. Junge,et al.  ATP synthase: an electrochemical transducer with rotatory mechanics. , 1997, Trends in biochemical sciences.

[10]  R. H. Fillingame,et al.  On the Role of Arg-210 and Glu-219 of Subunit a in Proton Translocation by the Escherichia coliF0F1-ATP Synthase* , 1997, The Journal of Biological Chemistry.

[11]  Kazuhiko Kinosita,et al.  Direct Observation of the Rotation of ε Subunit in F1-ATPase* , 1998, The Journal of Biological Chemistry.

[12]  George Oster,et al.  Energy transduction in ATP synthase , 1998, Nature.

[13]  H. Noji,et al.  Direct observation of the rotation of epsilon subunit in F1-ATPase. , 1998, The Journal of biological chemistry.

[14]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[15]  R. H. Fillingame,et al.  Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Girvin,et al.  Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. , 1998, Biochemistry.

[17]  R. H. Fillingame,et al.  Arrangement of the Multicopy H+-translocating Subunit c in the Membrane Sector of the Escherichia coliF1F0 ATP Synthase* , 1998, The Journal of Biological Chemistry.

[18]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[19]  G. Oster,et al.  Energy transduction in the sodium F-ATPase of Propionigenium modestum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Girvin,et al.  Structural changes linked to proton translocation by subunit c of the ATP synthase , 1999, Nature.

[21]  T. Yanagida,et al.  Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. , 1999, Science.

[22]  Masasuke Yoshida,et al.  Rotation of Escherichia coli F(1)-ATPase. , 1999, Biochemical and biophysical research communications.

[23]  R. H. Fillingame,et al.  Structure of the subunit c oligomer in the F1Fo ATP synthase: model derived from solution structure of the monomer and cross-linking in the native enzyme. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[25]  K Kinosita,et al.  Rotation of F(1)-ATPase and the hinge residues of the beta subunit. , 2000, The Journal of experimental biology.

[26]  R. H. Fillingame,et al.  The Oligomeric Subunit c Rotor in the Fo Sector of ATP Synthase: Unresolved Questions in Our Understanding of Function , 2000, Journal of bioenergetics and biomembranes.

[27]  G. Groth,et al.  Molecular models of the structural arrangement of subunits and the mechanism of proton translocation in the membrane domain of F(1)F(0) ATP synthase. , 2000, Biochimica et biophysica acta.

[28]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[29]  S. Dunn,et al.  ThebSubunit ofEscherichia coliATP Synthase , 2000, Journal of bioenergetics and biomembranes.

[30]  Andrew G. W. Leslie,et al.  The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution , 2000, Nature Structural Biology.

[31]  R. H. Fillingame,et al.  Coupling H(+) transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. , 2000, The Journal of experimental biology.

[32]  W. Junge,et al.  F‐ATPase: specific observation of the rotating c subunit oligomer of EFoEF1 , 2000, FEBS letters.

[33]  P. Boyer,et al.  Catalytic site forms and controls in ATP synthase catalysis. , 2000, Biochimica et biophysica acta.

[34]  K. Schulten,et al.  Steered molecular dynamics and mechanical functions of proteins. , 2001, Current opinion in structural biology.

[35]  M. Müller,et al.  Inter‐subunit rotation and elastic power transmission in F0F1‐ATPase , 2001, FEBS letters.

[36]  R. H. Fillingame,et al.  The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Kazuhiko Kinosita,et al.  Pause and rotation of F1-ATPase during catalysis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  G. Kaim The Na(+)-translocating F(1)F(0) ATP synthase of Propionigenium modestum: mechanochemical insights into the F(0) motor that drives ATP synthesis. , 2001, Biochimica et biophysica acta.

[39]  A. Leslie,et al.  Structure of Bovine Mitochondrial F1-ATPase with Nucleotide Bound to All Three Catalytic Sites Implications for the Mechanism of Rotary Catalysis , 2001, Cell.

[40]  M. Futai,et al.  Rotation of a complex of the gamma subunit and c ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable. , 2001, The Journal of biological chemistry.

[41]  D. Case,et al.  Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations , 2001 .

[42]  Hiroyasu Itoh,et al.  Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase , 2001, Nature.

[43]  K. Schulten,et al.  Steered molecular dynamics investigations of protein function. , 2001, Journal of molecular graphics & modelling.

[44]  Alexander D. MacKerell,et al.  CHARMM: The Energy Function and Its Parameterization , 2002 .

[45]  K. Schulten,et al.  Energetics of glycerol conduction through aquaglyceroporin GlpF , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Kühlbrandt,et al.  Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthase. , 2002, Journal of molecular biology.

[47]  Jianpeng Ma,et al.  A dynamic analysis of the rotation mechanism for conformational change in F(1)-ATPase. , 2002, Structure.

[48]  Helmut Grubmüller,et al.  Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase , 2002, Nature Structural Biology.

[49]  R. H. Fillingame,et al.  Aqueous Access Channels in Subunit a of Rotary ATP Synthase* , 2003, The Journal of Biological Chemistry.

[50]  R. H. Fillingame,et al.  Mechanics of coupling proton movements to c‐ring rotation in ATP synthase , 2003, FEBS letters.

[51]  Klaus Schulten,et al.  Reaction paths based on mean first-passage times , 2003 .