Automaton model of protein: dynamics of conformational and functional states

In this conceptual paper we propose to explore the analogy between ontic/epistemic description of quantum phenomena and interrelation between dynamics of conformational and functional states of proteins. Another new idea is to apply theory of automata to model the latter dynamics. In our model protein's behavior is modeled with the aid of two dynamical systems, ontic and epistemic, which describe evolution of conformational and functional states of proteins, respectively. The epistemic automaton is constructed from the ontic automaton on the basis of functional (observational) equivalence relation on the space of ontic states. This reminds a few approaches to emergent quantum mechanics in which a quantum (epistemic) state is treated as representing a class of prequantum (ontic) states. This approach does not match to the standard protein structure-function paradigm. However, it is perfect for modeling of behavior of intrinsically disordered proteins. Mathematically space of protein's ontic states (conformational states) is modeled with the aid of p-adic numbers or more general ultrametric spaces encoding the internal hierarchical structure of proteins. Connection with theory of p-adic dynamical systems is briefly discussed.

[1]  Vladimir Anashin,et al.  Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.

[2]  Benoit H. Dessailly,et al.  Exploring the structure and function paradigm. , 2008, Current opinion in structural biology.

[3]  Andrei Khrennikov,et al.  Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics , 2015 .

[4]  A. Khrennikov,et al.  Modelling of psychological behavior on the basis of ultrametric mental space: Encoding of categories by balls , 2010 .

[5]  p-adic repellers in Qp are subshifts of finite type , 2007 .

[6]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[7]  Ekaterina Yurova,et al.  Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis , 2012 .

[8]  Fionn Murtagh,et al.  Ultrametric model of mind, II: Application to text content analysis , 2012, ArXiv.

[9]  Arvind Ramanathan,et al.  Protein conformational populations and functionally relevant substates. , 2014, Accounts of chemical research.

[10]  A. Yu. Khrennikov Cognitive processes of the brain: An ultrametric model of information dynamics in unconsciousness , 2014 .

[11]  Andrei Khrennikov,et al.  Quantum-like model of partially directed evolution. , 2017, Progress in biophysics and molecular biology.

[12]  Vladimir Anashin,et al.  The Non-Archimedean Theory of Discrete Systems , 2011, Math. Comput. Sci..

[13]  S. V. Kozyrev Ultrametric Analysis and Interbasin Kinetics , 2006 .

[14]  Masanori Ohya,et al.  Quantum-Like Model for Decision Making Process in Two Players Game , 2011 .

[15]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[16]  Vladimir Anashin Automata finiteness criterion in terms of van der Put series of automata functions , 2011, ArXiv.

[17]  Taksu Cheon,et al.  Interference and inequality in quantum decision theory , 2010, 1008.2628.

[18]  Fionn Murtagh,et al.  The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking , 2013 .

[19]  M. Bolognesi,et al.  Function and Structure of Inherently Disordered Proteins This Review Comes from a Themed Issue on Proteins Edited Prediction of Non-folding Proteins and Regions Frequency of Disordered Regions Protein Evolution Partitioning Unstructured Proteins and Regions into Groups Involvement of Inherently Diso , 2022 .

[20]  S. Benkovic,et al.  Flexibility, diversity, and cooperativity: pillars of enzyme catalysis. , 2011, Biochemistry.

[21]  Jean Vuillemin Finite Digital Synchronous Circuits Are Characterized by 2-Algebraic Truth Tables , 2000, ASIAN.

[22]  Andrei Khrennikov Probability and Randomness: Quantum Versus Classical , 2016 .

[23]  Harald Atmanspacher,et al.  Determinism Is Ontic, Determinability is Epistemic , 2001 .

[24]  Andrei Khrennikov,et al.  Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models , 2011 .

[25]  Emmanuel Haven,et al.  Instability of political preferences and the role of mass media: a dynamical representation in a quantum framework , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[27]  Vladimir Anashin,et al.  Quantization causes waves: Smooth finitely computable functions are affine , 2015, ArXiv.

[28]  S Albeverio,et al.  Memory retrieval as a p-adic dynamical system. , 1999, Bio Systems.

[29]  Emmanuel Haven,et al.  An Application of the Theory of Open Quantum Systems to Model the Dynamics of Party Governance in the US Political System , 2014 .

[30]  Andrei Khrennikov,et al.  Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model , 2003 .

[31]  Harald Atmanspacher,et al.  Epistemic and Ontic Quantum Realities , 2003 .

[32]  J. Acacio de Barros,et al.  Joint probabilities and quantum cognition , 2012, 1206.6706.

[33]  V. D. Seleznev,et al.  Mechanisms and models of the active transport of ions and the transformation of energy in intracellular compartments. , 2012, Progress in biophysics and molecular biology.

[34]  Max Tegmark,et al.  The importance of quantum decoherence in brain processes , 1999, ArXiv.

[35]  Andrei Khrennikov,et al.  Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes. , 2015, Progress in biophysics and molecular biology.

[36]  Branko Dragovich,et al.  p-Adic Modelling of the Genome and the Genetic Code , 2007, Comput. J..

[37]  Polina Khrennikova,et al.  Quantum dynamical modeling of competition and cooperation between political parties: The coalition and non-coalition equilibrium model , 2016 .

[38]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[39]  Jennifer S Trueblood,et al.  A quantum theoretical explanation for probability judgment errors. , 2011, Psychological review.

[40]  M Madan Babu,et al.  Intrinsically disordered proteins. , 2012, Molecular bioSystems.

[41]  Vlatko Vedral,et al.  Quantum physics meets biology , 2009, HFSP journal.

[42]  S. V. Kozyrev,et al.  Dynamics on rugged landscapes of energy and ultrametric diffusion , 2010 .

[43]  G. Iurato Mathematical thought in the light of Matte Blanco’s work , 2013 .

[44]  Masanori Ohya,et al.  Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli’s metabolism of glucose/lactose , 2012, Systems and Synthetic Biology.

[45]  Ekaterina Yurova Van der Put basis and p-adic dynamics , 2010 .

[46]  Polina Khrennikova,et al.  Application of quantum master equation for long-term prognosis of asset-prices , 2016 .

[47]  Polina Khrennikova Evolution of quantum-like modeling in decision making processes , 2012 .

[48]  V. Anashin Smooth finitely computable functions are affine, or why quantum systems cause waves , 2015 .

[49]  Fionn Murtagh,et al.  Ultrametric model of mind, I: Review , 2012, ArXiv.

[50]  George H. Mealy,et al.  A method for synthesizing sequential circuits , 1955 .

[51]  Yoshiharu Tanaka,et al.  Quantum-like model of brain's functioning: decision making from decoherence. , 2011, Journal of theoretical biology.

[52]  Andrei Khrennikov,et al.  Quantum-like brain: "Interference of minds". , 2006, Bio Systems.

[53]  Vladimir Anashin,et al.  Ergodic Transformations in the Space of p‐Adic Integers , 2006, math/0602083.

[54]  Marcus Nilsson,et al.  P-adic Deterministic and Random Dynamics , 2004 .

[55]  Andrei Khrennikov,et al.  p-Adic valued quantization , 2009 .

[56]  Harald Atmanspacher,et al.  Temporal nonlocality in bistable perception , 2012 .

[57]  A. Ramanathan,et al.  Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis , 2011, PLoS biology.

[58]  Yoshiharu Tanaka,et al.  Dynamics of Entropy in Quantum-like Model of Decision Making. , 2011 .

[59]  Andrei Khrennikov Contextual viewpoint to quantum stochastics , 2003 .

[60]  Ehtibar N. Dzhafarov,et al.  Selectivity in Probabilistic Causality: Where Psychology Runs Into Quantum Physics , 2011, 1110.2388.

[61]  V. Uversky Intrinsically Disordered Proteins , 2014 .

[62]  Andrei Khrennikov Schrödinger dynamics as the Hilbert space projection of a realistic contextual probabilistic dynamics , 2005 .

[63]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[64]  Branko Dragovich,et al.  A p-adic model of DNA sequence and genetic code , 2006, ArXiv.

[65]  Contextual approach to quantum mechanics and the theory of the fundamental prespace , 2003, quant-ph/0306003.

[66]  A Khrennikov,et al.  Human subconscious as a p-adic dynamical system. , 1998, Journal of theoretical biology.

[67]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[68]  M. Karplus,et al.  A hierarchy of timescales in protein dynamics is linked to enzyme catalysis , 2007, Nature.

[69]  Patrick Suppes,et al.  Quantum mechanics, interference, and the brain , 2009 .

[70]  Andrei Khrennikov,et al.  On Quantum-Like Probabilistic Structure of Mental Information , 2004, Open Syst. Inf. Dyn..

[71]  Stuart R. Hameroff,et al.  QUANTUM COHERENCE IN MICROTUBULES: A NEURAL BASIS FOR EMERGENT CONSCIOUSNESS? 1 , 1994 .

[72]  Владимир Сергеевич Анашин,et al.  Равномерно распределенные последовательности целых $p$-адических чисел@@@Uniformly distributed sequences of $p$-adic integers , 2002 .

[73]  Harald Atmanspacher,et al.  Between chance and choice : interdisciplinary perspectives on determinism , 2002 .

[74]  Branko Dragovich Adelic Harmonic Oscillator , 1995 .

[75]  Arvind Ramanathan,et al.  Discovering Conformational Sub-States Relevant to Protein Function , 2011, PloS one.

[76]  G. Iurato A Brief Comparison of the Unconscious as Seen by Jung and Lévi‐Strauss , 2015 .

[77]  Gerard 't Hooft,et al.  The Cellular Automaton Interpretation of Quantum Mechanics , 2014, 1405.1548.

[78]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[79]  E. Fischer Einfluss der Configuration auf die Wirkung der Enzyme , 1894 .

[80]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[81]  Masanori Ohya,et al.  Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law , 2013 .

[82]  Yoshiharu Tanaka,et al.  Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties , 2012 .

[83]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[84]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[85]  Andrei Khrennikov,et al.  Gene expression from polynomial dynamics in the 2-adic information space , 2006, q-bio/0611068.

[86]  Masanori Ohya,et al.  Quantum-like interference effect in gene expression: glucose-lactose destructive interference , 2011, Systems and Synthetic Biology.

[87]  Ekaterina Yurova On measure-preserving functions over ℤ3 , 2012 .

[88]  H. Atmanspacher,et al.  Extrinsic and Intrinsic Irreversibility in Probabilistic Dynamical Laws , 2001 .