Specific Primer Design for Accurate Detection of SARS-CoV-2 Using Deep Learning

1. Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands 2. UMR 518 MIA-Paris, INRAE, c/o 113 rue Nationale, 75103, Paris, France 3. Hospital Civil de Guadalajara ”Dr. Juan I. Menchaca”. Salvador Quevedo y Zubieta 750, Independencia Oriente, C.P. 44340 Guadalajara, Jalisco, Mexico 4. Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands 5. Athena Institute, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands. 6. Department Immunology, Danone Nutricia research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands

[1]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[2]  W. Pearson Rapid and sensitive sequence comparison with FASTP and FASTA. , 1990, Methods in enzymology.

[3]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[4]  I. Mizrachi GenBank : The Nucleotide Sequence Database , 2002 .

[5]  Jonas S. Almeida,et al.  Alignment-free sequence comparison-a review , 2003, Bioinform..

[6]  Eric Claassen,et al.  Managing severe acute respiratory syndrome (SARS) intellectual property rights: the possible role of patent pooling. , 2005, Bulletin of the World Health Organization.

[7]  Kouji Matsushima,et al.  Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF‐κB activation , 2006, FEBS Letters.

[8]  J. Peiris,et al.  Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. , 2007, The Journal of general virology.

[9]  Jack A. M. Leunissen,et al.  Turning CFCs into salt. , 1996, Nucleic Acids Res..

[10]  Ruslan Kalendar,et al.  FastPCR Software for PCR Primer and Probe Design and Repeat Search , 2009 .

[11]  Susanna K. P. Lau,et al.  Coronavirus Genomics and Bioinformatics Analysis , 2010, Viruses.

[12]  S. Istrail,et al.  Computational Intelligence Methods for Bioinformatics and Biostatistics , 2012, Lecture Notes in Computer Science.

[13]  Joakim Dillner,et al.  Phylogenetically diverse TT virus viremia among pregnant women. , 2012, Virology.

[14]  X. de Lamballerie,et al.  Next generation sequencing of viral RNA genomes , 2013, BMC Genomics.

[15]  Giosuè Lo Bosco,et al.  Applications of alignment-free methods in epigenomics , 2014, Briefings Bioinform..

[16]  Antonino Fiannaca,et al.  A Deep Learning Approach to DNA Sequence Classification , 2015, CIBB.

[17]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[18]  Kenji Satou,et al.  DNA Sequence Classification by Convolutional Neural Network , 2016 .

[19]  Yuelong Shu,et al.  GISAID: Global initiative on sharing all influenza data – from vision to reality , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[20]  George B. Haringhuizen,et al.  How ownership rights over microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders , 2018, PloS one.

[21]  Carolina dos S. Ribeiro,et al.  Threats to timely sharing of pathogen sequence data , 2018, Science.

[22]  Fengzhu Sun,et al.  Identifying viruses from metagenomic data by deep learning. , 2018, 1806.07810.

[23]  C. Shi,et al.  SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes , 2019, Cell Death Discovery.

[24]  Alberto Tonda,et al.  Automatic discovery of 100-miRNA signature for cancer classification using ensemble feature selection , 2019, BMC Bioinformatics.

[25]  Raul Vicente,et al.  ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples , 2019, bioRxiv.

[26]  Tiangang Liu,et al.  Clinical diagnosis of 8274 samples with 2019-novel coronavirus in Wuhan , 2020, medRxiv.

[27]  Pyoeng Gyun Choe,et al.  The First Case of 2019 Novel Coronavirus Pneumonia Imported into Korea from Wuhan, China: Implication for Infection Prevention and Control Measures , 2020, Journal of Korean medical science.

[28]  Bo Xu,et al.  A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19) , 2020, European Radiology.

[29]  Victor M Corman,et al.  Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[30]  E. Holmes,et al.  A Genomic Perspective on the Origin and Emergence of SARS-CoV-2 , 2020, Cell.

[31]  E. Holmes,et al.  Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding , 2020, The Lancet.

[32]  Z. Tong,et al.  Combination of RT‐qPCR testing and clinical features for diagnosis of COVID‐19 facilitates management of SARS‐CoV‐2 outbreak , 2020, Journal of medical virology.

[33]  Malik Peiris,et al.  Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an Outbreak of Pneumonia , 2020, Clinical chemistry.

[34]  Hayden C. Metsky,et al.  CRISPR-based surveillance for COVID-19 using genomically-comprehensive machine learning design , 2020, bioRxiv.

[35]  Xuhua Xia,et al.  Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense , 2020, Molecular biology and evolution.

[36]  Richard Molenkamp,et al.  Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning , 2020, bioRxiv.