Vectorial Finite-Element Method Without Any Spurious Solutions for Dielectric Waveguiding Problems Using Transverse Magnetic-Field Component

An improved finite-element method for the analysis of dielectric waveguiding problems is formulated rising the transverse magnetic-field component. In this approach, the divergence relation /spl nabla/ · H = 0 is satisfied and the spurious, nonphysical solutions which have been necessarily included in the solutions of earlier vectorial finite-element methods are completely eliminated in the whole region of a propagation diagram. To verify the accuracy of the present method, numerical results for a rectangular metallic waveguide half filled with dielectric are presented and compared with exact and earlier finite-element solutions. Dielectric rectangular waveguides are also analyzed for both isotropic and anisotropic cases.

[1]  M. Koshiba,et al.  Vectorial wave analysis of side-tunnel type polarization-maintaining optical fibers by variational finite elements , 1986 .

[2]  M. Koshiba,et al.  Lateral mode analysis of buried heterostructure diode lasers by the finite-element method , 1986 .

[3]  M. Koshiba,et al.  Vectorial wave analysis of stress-applied polarization-maintaining optical fibers by the finite-element method , 1986 .

[4]  M. Koshiba,et al.  Finite-element solution of anisotropic waveguides with arbitrary tensor permittivity , 1986 .

[5]  M. Koshiba,et al.  Finite-Element Formulation in Terms of the Electric-Field Vector for Electromagnetic Waveguide Problems , 1985 .

[6]  J. P. Webb,et al.  Finite-Element Analysis of Dielectric Waveguides with Curved Boundaries , 1985 .

[7]  Masanori Koshiba,et al.  Improved Finite-Element Formulation in Terms of the Magnetic Field Vector for Dielectric Waveguides , 1985 .

[8]  B. Rahman,et al.  Finite-element solution of integrated optical waveguides , 1984 .

[9]  M. Hano Finite-Element Analysis of Dielectric-Loaded Waveguides , 1984 .

[10]  B. M. A. Rahman,et al.  Penalty Function Improvement of Waveguide Solution by Finite Elements , 1984 .

[11]  Masanori Koshiba,et al.  Vectorial finite-element method without spurious solutions for dielectric waveguide problems , 1984 .

[12]  M. Koshiba,et al.  Vectorial Finite-Element Formulation without Spurious Modes for Dielectric Waveguides , 1984 .

[13]  P. E. Lagasse,et al.  Finite Element Analysis Waveguides of Optical , 1981 .

[14]  H. Niki,et al.  Analysis of Open-Type Dielectric Waveguides by the Finite-Element Iterative Method , 1981 .

[15]  S. B. Dong,et al.  Single-mode optical waveguides. , 1979, Applied optics.

[16]  A. Konrad,et al.  High-Order Triangular Finite Elements for Electromagnetic Waves in Anisotropic Media , 1977 .

[17]  A. Konrad,et al.  Vector Variational Formulation of Electromagnetic Fields in Anisotropic Media , 1976 .

[18]  S. B. Dong,et al.  Arbitrarily shaped inhomogeneous optical fiber or integrated optical waveguides , 1975 .

[19]  G. Cambrell,et al.  Numerical Solution of Surface Waveguide Modes Using Transverse Field Components (Short Papers) , 1974 .

[20]  J. Goell A circular-harmonic computer analysis of rectangular dielectric waveguides , 1969 .

[21]  K. Hayata,et al.  Vector E-field finite-element analysis of dielectric optical waveguides. , 1986, Applied optics.

[22]  M. Koshiba,et al.  Study of spurious solutions of finite‐element method in the three‐component magnetic field formulation for dielectric waveguide problems , 1985 .

[23]  B. Rahman,et al.  Finite-Element Analysis of Optical and Microwave Waveguide Problems , 1984 .

[24]  J. Decotignie,et al.  Birefringence Properties of Twin-Core Fibers by Finite Differences , 1982 .

[25]  K. Oyamada,et al.  Two-dimensional finite-element method calculation of propagation characteristics of axially nonsymmetrical optical fibers , 1982 .

[26]  P. Daly,et al.  Hybrid-Mode Analysis of Microstrip by Finite-Element Methods , 1971 .