Exploring cosmic origins with CORE: Cluster science

We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (>1014 M⊙) at redshift z>1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect 0∼ 50 clusters at redshift z>1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4×1014 M⊙, for a 120 cm aperture telescope, and 1014 M⊙ for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky would be shallower than CORE and detect about 11,000 clusters, while a survey with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with the latter, CORE would reach a limiting mass of M500 ∼ 2−3 × 1013 M⊙ and detect 220,000 clusters (5 sigma detection limit). Cosmological constraints from CORE cluster counts alone are competitive with other scheduled large scale structure surveys in the 2020's for measuring the dark energy equation-of-state parameters w0 and wa (σw0=0.28, σwa=0.31). In combination with primary CMB constraints, CORE cluster counts can further reduce these error bars on w0 and wa to 0.05 and 0.13 respectively, and constrain the sum of the neutrino masses, Σ mν, to 39 meV (1 sigma). The wide frequency coverage of CORE, 60–600 GHz, will enable measurement of the relativistic thermal SZE by stacking clusters. Contamination by dust emission from the clusters, however, makes constraining the temperature of the intracluster medium difficult. The kinetic SZE pairwise momentum will be extracted with 0S/N=7 in the foreground-cleaned CMB map. Measurements of TCMB(z) using CORE clusters will establish competitive constraints on the evolution of the CMB temperature: (1+z)1−β, with an uncertainty of σβ ≲ 2.7× 10−3 at low redshift (z ≲ 1). The wide frequency coverage also enables clean extraction of a map of the diffuse SZE signal over the sky, substantially reducing contamination by foregrounds compared to the Planck SZE map extraction. Our analysis of the one-dimensional distribution of Compton-y values in the simulated map finds an order of magnitude improvement in constraints on σ8 over the Planck result, demonstrating the potential of this cosmological probe with CORE.

T. Kitching | H. Kurki-Suonio | J. Bartlett | M. Kunz | J. Weller | J. Mohr | J. Lesgourgues | A. Melchiorri | Z. Cai | R. G'enova-Santos | J. Rubino-Mart'in | E. Hivon | A. Banday | A. Lasenby | A. Lewis | A. Challinor | A. Lasenby | F. Bouchet | P. Ade | J. Borrill | P. Bernardis | S. Hanany | S. Masi | J. Diego | V. Poulin | S. Clesse | M. Ashdown | M. Quartin | R. Weygaert | T. Kisner | F. Boulanger | C. Martins | M. Bersanelli | A. Bonaldi | C. Burigana | G. Zotti | J. Delabrouille | F. Finelli | J. Gonz'alez-Nuevo | C. Hern'andez-Monteagudo | M. Liguori | B. Maffei | P. Mazzotta | P. Natoli | D. Paoletti | G. Patanchon | M. Piat | G. Polenta | M. Remazeilles | M. Tomasi | J. Valiviita | B. Tent | P. Vielva | N. Vittorio | S. Feeney | S. Galli | M. Lattanzi | J. Melin | N. Trappe | A. Pollo | N. Bartolo | R. Battye | J. Chluba | E. D. Valentino | M. Gerbino | M. López-Caniego | J. Macías-Pérez | J. Rubiño-Martín | L. Salvati | T. Trombetti | G. Pisano | G. d'Alessandro | A. Coppolecchia | M. Petris | L. Lamagna | A. Paiella | A. Tartari | M. Zannoni | G. Gasperis | K. Kiiveri | V. Lindholm | P. de Bernardis | D. McCarthy | D. Baumann | A. Notari | S. Ferraro | S. Colafrancesco | K. Basu | S. Triqueneaux | M. Negrello | M. Bonato | C. Tucker | D. Tramonte | A. Brun | J. Greenslade | A. Monfardini | M. Crook | V. Vennin | M. Calvo | G. Luzzi | M. Roman | M. Castellano | S. Grandis | M. Ballardini | S. Basak | D. Molinari | F. Forastieri | L. Polastri | R. Allison | W. Handley | J. Errard | C. Hervías-Caimapo | R. Génova-Santos | F. Boulanger | M. Bucher | A. Ach'ucarro | R. Banerji | J. Baselmans | T. Brinckmann | A. Buzzelli | C. Carvalho | I. Colantoni | S. Hagstotz | M. Hills | K. Young | J. Macias-P'erez | A. Achúcarro | E. Martínez-González | R. Fern'andez-Cobos | G. De Gasperis | C. Hernández-Monteagudo | W. Handley | J. Väliviita | Z. Cai | G. D’Alessandro | R. V. de Weygaert | P. Bernardis | J. Macı́as-Pérez | J. Macias-Perez

[1]  J. G. Bartlett,et al.  Dust in galaxy clusters: Modeling at millimeter wavelengths and impact on Planck cluster cosmology , 2018, Astronomy & Astrophysics.

[2]  Peter Ade,et al.  Exploring cosmic origins with CORE: Cosmological parameters , 2016, 1612.00021.

[3]  R. Trotta Bayesian Methods in Cosmology , 2017, 1701.01467.

[4]  A. Jenkins,et al.  The redshift evolution of massive galaxy clusters in the MACSIS simulations , 2016, 1607.04569.

[5]  W. Percival,et al.  The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions , 2016, 1607.03148.

[6]  David N. Spergel,et al.  Will kinematic Sunyaev-Zel'dovich measurements enhance the science return from galaxy redshift surveys? , 2016, 1606.06367.

[7]  Gong-Bo Zhao,et al.  Information Gain in Cosmology: From the Discovery of Expansion to Future Surveys , 2016, 1606.06273.

[8]  Joop Schaye,et al.  The scatter and evolution of the global hot gas properties of simulated galaxy cluster populations , 2016, 1606.04545.

[9]  J. E. Ruhl,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2016, 1603.06522.

[10]  C. A. Oxborrow,et al.  Planck intermediate results XLIII. Spectral energy distribution of dust in clusters of galaxies , 2016 .

[11]  J. Frieman,et al.  Detection of the kinematic Sunyaev-Zel'dovich effect with DES Year 1 and SPT , 2016, 1603.03904.

[12]  R. Nichol,et al.  THE REDMAPPER GALAXY CLUSTER CATALOG FROM DES SCIENCE VERIFICATION DATA , 2016, The Astrophysical Journal Supplement Series.

[13]  R. G'enova-Santos,et al.  Sub-percent constraints on cosmological temperature evolution , 2015, 1511.04335.

[14]  S. Borgani,et al.  Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey , 2015, 1505.02165.

[15]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[16]  A. Amara,et al.  Information gains from cosmological probes , 2015, 1510.06422.

[17]  M. Postman,et al.  CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS , 2015, 1507.04385.

[18]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[19]  C. Martins,et al.  Constraining the evolution of the CMB temperature with SZ measurements from Planck data , 2015, 1502.07858.

[20]  R. G'enova-Santos,et al.  CONSTRAINING THE REDSHIFT EVOLUTION OF THE COSMIC MICROWAVE BACKGROUND BLACKBODY TEMPERATURE WITH PLANCK DATA , 2015, 1502.06707.

[21]  H. Hoekstra,et al.  The Canadian Cluster Comparison Project: detailed study of systematics and updated weak lensing masses , 2015, 1502.01883.

[22]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[23]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[24]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[25]  Federico Nati,et al.  Evidence of lensing of the cosmic microwave background by dark matter halos. , 2014, Physical review letters.

[26]  M. Lueker,et al.  MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σv AND X-RAY YX MEASUREMENTS , 2014, 1407.2942.

[27]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL’DOVICH AND X-RAY SURVEYS. IV. CHARACTERIZING DENSITY AND PRESSURE CLUMPING DUE TO INFALLING SUBSTRUCTURES , 2014, 1405.3346.

[28]  Jean-Luc Starck,et al.  Sparsely sampling the sky: Regular vs. random sampling , 2013, 1306.3035.

[29]  M. Lueker,et al.  A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE , 2014, 1412.7521.

[30]  C. Martins Fundamental cosmology in the E-ELT era: the status and future role of tests of fundamental coupling stability , 2014, General Relativity and Gravitation.

[31]  C. Martins Fundamental cosmology in the E-ELT era: the status and future role of tests of fundamental coupling stability , 2014, 1412.0108.

[32]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel\'dovich One-Point PDF , 2014, 1411.8004.

[33]  G. W. Pratt,et al.  Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map , 2014 .

[34]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[35]  James G. Bartlett,et al.  Measuring cluster masses with CMB lensing: a statistical approach , 2014, 1408.5633.

[36]  J. Chluba Tests of the CMB temperature-redshift relation, CMB spectral distortions and why adiabatic photon production is hard , 2014, 1405.1277.

[37]  A. Amara,et al.  Information gains from cosmic microwave background experiments , 2014, 1402.3593.

[38]  M. Lueker,et al.  Constraints on the CMB temperature evolution using multiband measurements of the Sunyaev–Zel'dovich effect with the South Pole Telescope , 2013, 1312.2462.

[39]  A. Amara,et al.  Model breaking measure for cosmological surveys , 2013, 1309.5955.

[40]  M. Petris,et al.  The MUSIC of Galaxy Clusters – III. Properties, evolution and Y–M scaling relation of protoclusters of galaxies , 2013, 1309.5387.

[41]  Princeton,et al.  Joint analysis of cluster number counts and weak lensing power spectrum to correct for the super-sample covariance , 2013, 1307.4399.

[42]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[43]  C. A. Oxborrow,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[44]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy & Astrophysics.

[45]  R. Blandford,et al.  Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images , 2012, 1208.0597.

[46]  N. Aghanim,et al.  Measurement of the TCMB evolution from the Sunyaev-Zel’dovich effect , 2014 .

[47]  N. Aghanim,et al.  Measurement of $T_{\rm CMB}$ evolution from Sunyaev-Zel'dovich effect , 2013, 1311.4694.

[48]  C. A. Oxborrow,et al.  Planck 2013 results. XXI. All-sky Compton parameter power spectrum and high-order statistics , 2013, 1303.5081.

[49]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: measuring the cosmic growth rate with the two-point galaxy correlation function , 2013, 1302.5178.

[50]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[51]  N. Aghanim,et al.  Reconstruction of high-resolution Sunyaev–Zeldovich maps from heterogeneous data sets using needlets , 2012, 1207.4683.

[52]  J. Aumont,et al.  The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.

[53]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[54]  Mathieu Remazeilles Reconstruction of high-resolution SZ maps from heterogeneous datasets using needlets , 2012 .

[55]  K. Benabed,et al.  Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.

[56]  Peter Ade,et al.  The POLARBEAR experiment , 2012, Other Conferences.

[57]  Bradford Benson The South Pole Telescope: Latest Results and Future Prospects , 2012, Proceedings of the International Astronomical Union.

[58]  Edward J. Wollack,et al.  Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel'dovich effect. , 2012, Physical review letters.

[59]  C. Martins,et al.  Constraints on the CMB temperature redshift dependence from SZ and distance measurements , 2011, 1112.1862.

[60]  F. Pearce,et al.  Sunyaev–Zel’dovich clusters in Millennium gas simulations , 2012 .

[61]  A. Liddle,et al.  Sunyaev-Zeldovich clusters in Millenium gas simualtions , 2011, 1112.3769.

[62]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. I. THE INFLUENCE OF FEEDBACK, NON-THERMAL PRESSURE, AND CLUSTER SHAPES ON Y–M SCALING RELATIONS , 2011, 1109.3709.

[63]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[64]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM , 2011, 1104.2934.

[65]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[66]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[67]  L. Amendola,et al.  Robustness to systematics for future dark energy probes , 2011, 1101.1521.

[68]  P. Noterdaeme,et al.  The evolution of the cosmic microwave background temperature Measurements of TCMB at high redshift from carbon monoxide excitation , 2010, 1012.3164.

[69]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[70]  J. Cardoso,et al.  CMB and SZ effect separation with constrained Internal Linear Combinations , 2010, 1006.5599.

[71]  M. Halpern,et al.  ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope , 2010, Astronomical Telescopes + Instrumentation.

[72]  A. Ringwald,et al.  The Low-Energy Frontier of Particle Physics , 2010, 1002.0329.

[73]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[74]  A. Conte,et al.  REDSHIFT DEPENDENCE OF THE COSMIC MICROWAVE BACKGROUND TEMPERATURE FROM SUNYAEV–ZELDOVICH MEASUREMENTS , 2009 .

[75]  Astronomy,et al.  Redshift Dependence of the CMB Temperature from S-Z Measurements , 2009, 0909.2815.

[76]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[77]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[78]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[79]  L. I. V. Erde Correlation Properties of the Kinematic Sunyaev-zel'dovich Effect and Implications for Dark Energy , 2008 .

[80]  G. Ellis On the definition of distance in general relativity: I. M. H. Etherington (Philosophical Magazine ser. 7, vol. 15, 761 (1933)) , 2007 .

[81]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[82]  Wendy L. Freedman,et al.  Report of the Dark Energy Task Force , 2006, astro-ph/0609591.

[83]  J. G. Bartlett,et al.  Catalog extraction in SZ cluster surveys : a matched filter approach , 2006, astro-ph/0602424.

[84]  Wayne Hu,et al.  Likelihood methods for cluster dark energy surveys , 2006, astro-ph/0602147.

[85]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[86]  M. Arnaud,et al.  The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile , 2005, astro-ph/0501635.

[87]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[88]  R. Sunyaev,et al.  Discriminating between unresolved point sources and 'negative' Sunyaev-Zel'dovich clusters in cosmic microwave background maps , 2003 .

[89]  J. Rubiño-Martín,et al.  Discriminating between unresolved point sources and"negative"SZ clusters in CMB maps , 2002, astro-ph/0211430.

[90]  S. Borgani,et al.  THE EVOLUTION OF X-RAY CLUSTERS OF GALAXIES , 2002, astro-ph/0209035.

[91]  A. Melchiorri,et al.  Cosmic Microwave Background Temperature at Galaxy Clusters , 2002, astro-ph/0208027.

[92]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[93]  Y. Rephaeli,et al.  Cosmic Microwave Background Comptonization by Energetic Nonthermal Electrons in Clusters of Galaxies , 2002, astro-ph/0204355.

[94]  S. Nozawa,et al.  Radiative processes in the intracluster plasma , 2002 .

[95]  J. Bartlett,et al.  Simulations of Sunyaev-Zel'dovich maps and their applications , 2001, astro-ph/0109186.

[96]  J. Mohr,et al.  Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys , 2000, astro-ph/0002336.

[97]  Chung-Pei Ma,et al.  AMiBA 2001: HIGH-Z CLUSTERS, MISSING BARYONS, AND CMB POLARIZATION , 2001 .

[98]  P. Petitjean,et al.  The microwave background temperature at the redshift of 2.33771 , 2000, astro-ph/0012222.

[99]  M. Gladders,et al.  A New Method For Galaxy Cluster Detection. I. The Algorithm , 2000, astro-ph/0004092.

[100]  Constraints on Quintessence from Future Galaxy Cluster Surveys , 2000 .

[101]  P. Ferreira,et al.  Streaming Velocities as a Dynamical Estimator of Ω , 1998, astro-ph/9812456.

[102]  P. Steinhardt,et al.  Cluster Abundance Constraints for Cosmological Models with a Time-varying, Spatially Inhomogeneous Energy Component with Negative Pressure , 1998 .

[103]  R. Sunyaev,et al.  Cosmic Microwave Background Radiation in the Direction of a Moving Cluster of Galaxies with Hot Gas: Relativistic Corrections , 1998 .

[104]  R. Sunyaev,et al.  CMB Radiation in the Direction of a Moving Cluster of Galaxies with Hot Gas: Relativistic Corrections , 1998, astro-ph/9804125.

[105]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. IV. Analytic Fitting Formula for the Numerical Results , 1999, astro-ph/9912008.

[106]  P. Steinhardt,et al.  Cluster Abundance Constraints on Quintessence Models , 1998, astro-ph/9804015.

[107]  A. Challinor,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect , 1997, astro-ph/9711161.

[108]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[109]  Lima Thermodynamics of decaying vacuum cosmologies. , 1996, Physical review. D, Particles and fields.

[110]  Y. Rephaeli Cosmic Microwave Background Comptonization by Hot Intracluster Gas , 1995 .

[111]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[112]  Y. Rephaeli On the determination of the degree of cosmological Compton distortions and the temperature of the cosmic blackbody radiation , 1980 .

[113]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[114]  F. Melchiorri,et al.  The Sunyaev-Zel'dovich effect in the millimetric region , 1978 .

[115]  Y. Zel’dovich,et al.  The velocity of clusters of galaxies relative to the microwave background. The possibility of its measurement , 1980 .

[116]  Y. Zeldovich,et al.  The Observations of relic radiation as a test of the nature of X-Ray radiation from the clusters of galaxies , 1972 .

[117]  Y. Zeldovich,et al.  Small-scale fluctuations of relic radiation , 1970, Astrophysics and Space Science.

[118]  I. M. H. Etherington LX. On the definition of distance in general relativity , 1933 .