Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase

ABSTRACT Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD+ and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2.

[1]  E. Jayamani,et al.  Energy Conservation via Electron-Transferring Flavoprotein in Anaerobic Bacteria , 2007, Journal of bacteriology.

[2]  B. Dijkstra,et al.  A crystallographic study of Cys69Ala flavodoxin II from Azotobacter vinelandii: Structural determinants of redox potential , 2005, Protein science : a publication of the Protein Society.

[3]  J. Leigh,et al.  Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase , 2010, Proceedings of the National Academy of Sciences.

[4]  R. Thauer,et al.  Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. , 2013, Biochimica et biophysica acta.

[5]  R. Wagner,et al.  Accumulation and incorporation of 185W-tungsten into proteins of Clostridium acidiurici and Clostridium cylindrosporum , 1987, Archives of Microbiology.

[6]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[7]  H. A. Barker,et al.  THE FERMENTATIVE DECOMPOSITION OF PURINES BY CLOSTRIDIUM ACIDI-URICI AND CLOSTRIDIUM CYLINDROSPORUM , 1941 .

[8]  R. D. Sagers,et al.  Formate Dehydrogenase from Clostridium acidiurici , 1972, Journal of bacteriology.

[9]  W. Martin Hydrogen, metals, bifurcating electrons, and proton gradients: The early evolution of biological energy conservation , 2012, FEBS letters.

[10]  H. A. Barker,et al.  Clostridium acidi-uridi and Clostridium cylindrosporum, Organisms Fermenting Uric Acid and Some Other Purines , 1942, Journal of bacteriology.

[11]  R. D. Britt,et al.  New Insights into [FeFe] Hydrogenase Activation and Maturase Function , 2012, PloS one.

[12]  V. Müller,et al.  A Bacterial Electron-bifurcating Hydrogenase* , 2012, The Journal of Biological Chemistry.

[13]  R. Wagner,et al.  Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation , 1977, Archives of Microbiology.

[14]  R. Daniel,et al.  The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration , 2012, PloS one.

[15]  Anne-Kristin Kaster,et al.  Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea , 2011, Proceedings of the National Academy of Sciences.

[16]  H. Drake,et al.  Glycine synthase of the purinolytic bacterium, Clostridium acidiurici. Purification of the glycine-CO2 exchange system. , 1984, The Journal of biological chemistry.

[17]  R. Thauer,et al.  NADP+ Reduction with Reduced Ferredoxin and NADP+ Reduction with NADH Are Coupled via an Electron-Bifurcating Enzyme Complex in Clostridium kluyveri , 2010, Journal of bacteriology.

[18]  M. Russell,et al.  Redox bifurcations: Mechanisms and importance to life now, and at its origin , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[19]  J. W. Peters,et al.  Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. , 2011, Structure.

[20]  R. Thauer,et al.  NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO , 2013, Journal of bacteriology.

[21]  M. Adams,et al.  The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production , 2009, Journal of bacteriology.

[22]  Fuli Li,et al.  Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.

[23]  V. Müller,et al.  An Electron-bifurcating Caffeyl-CoA Reductase* , 2013, The Journal of Biological Chemistry.

[24]  G. Vogels,et al.  Degradation of Purines and Pyrimidines by Microorganisms , 1976, Bacteriological reviews.

[25]  R. Cammack,et al.  Purification and characterization of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium , 1984 .

[26]  R. Thauer,et al.  A Reversible Electron-Bifurcating Ferredoxin- and NAD-Dependent [FeFe]-Hydrogenase (HydABC) in Moorella thermoacetica , 2013, Journal of bacteriology.

[27]  R. Thauer,et al.  Electron Bifurcation Involved in the Energy Metabolism of the Acetogenic Bacterium Moorella thermoacetica Growing on Glucose or H2 plus CO2 , 2012, Journal of bacteriology.

[28]  R. Thauer CO2 Reduction to Formate in Clostridium acidi-urici , 1973, Journal of bacteriology.