Approximating the Influence of Monotone Boolean Functions in $O(\sqrt{n})$ Query Complexity

<i>The Total Influence</i> (<i>Average Sensitivity</i>) of a discrete function is one of its fundamental measures. We study the problem of approximating the total influence of a monotone Boolean function, which we denote by <i>I</i>[<i>f</i>]. We present a randomized algorithm that approximates the influence of such functions to within a multiplicative factor of (1 ± <i>ε</i>) by performing <i>O</i>(√<i>n</i> <i>I</i>[<i>f</i>] poly(1/<i>ε</i>)) queries. We also prove a lower bound of <i>Ω</i>(√<i>n</i> log<i>n</i>·<i>I</i>[<i>f</i>]) on the query complexity of any constant factor approximation algorithm for this problem (which holds for <i>I</i>[<i>f</i>]=<i>Ω</i>(1)), hence showing that our algorithm is almost optimal in terms of its dependence on <i>n</i>. For general functions, we give a lower bound of <i>Ω</i>(<i>n</i> <i>I</i>[<i>f</i>]), which matches the complexity of a simple sampling algorithm.

[1]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[2]  Ryan O'Donnell,et al.  Learning Monotone Decision Trees in Polynomial Time , 2007, SIAM J. Comput..

[3]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[4]  L. Russo On the critical percolation probabilities , 1981 .

[5]  G. Kalai,et al.  Threshold Phenomena and Influence , 2005 .

[6]  Gil Kalai,et al.  NOTES AND COMMENTS: SOCIAL INDETERMINACY , 2004 .

[7]  Ronitt Rubinfeld,et al.  Monotonicity testing over general poset domains , 2002, STOC '02.

[8]  I. Benjamini,et al.  Noise sensitivity of Boolean functions and applications to percolation , 1998 .

[9]  Eric Blais Improved Bounds for Testing Juntas , 2008, APPROX-RANDOM.

[10]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[11]  Benny Sudakov,et al.  A Sharp Threshold for Network Reliability , 2002, Combinatorics, Probability and Computing.

[12]  Cristopher Moore,et al.  Computational Complexity and Statistical Physics , 2006, Santa Fe Institute Studies in the Sciences of Complexity.

[13]  Ehud Friedgut,et al.  Influences in Product Spaces: KKL and BKKKL Revisited , 2004, Combinatorics, Probability and Computing.

[14]  Nathan Linial,et al.  Collective Coin Flipping , 1989, Adv. Comput. Res..

[15]  Gil Kalai,et al.  A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem , 2002, Adv. Appl. Math..

[16]  Yishay Mansour,et al.  Learning monotone ku DNF formulas on product distributions , 1991, COLT '91.

[17]  Ryan O'Donnell,et al.  The chow parameters problem , 2008, SIAM J. Comput..

[18]  Ehud Friedgut,et al.  Boolean Functions With Low Average Sensitivity Depend On Few Coordinates , 1998, Comb..

[19]  J. Bourgain,et al.  Influences of Variables and Threshold Intervals under Group Symmetries , 1997 .

[20]  Ryan O'Donnell,et al.  Learning monotone decision trees in polynomial time , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[21]  Daniel J. Kleitman,et al.  Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.

[22]  Dana Ron,et al.  Testing Computability by Width Two OBDDs , 2009, APPROX-RANDOM.

[23]  F. Jotzo,et al.  Double counting and the Paris Agreement rulebook , 2019, Science.

[24]  Ravi B. Boppana,et al.  The Average Sensitivity of Bounded-Depth Circuits , 1997, Inf. Process. Lett..

[25]  MansourYishay,et al.  Constant depth circuits, Fourier transform, and learnability , 1993 .

[26]  N. Linial,et al.  The influence of variables in product spaces , 1992 .

[27]  Prasad Raghavendra,et al.  Average Sensitivity and Noise Sensitivity of Polynomial Threshold Functions , 2009, SIAM J. Comput..

[28]  Nathan Linial,et al.  Collective coin flipping, robust voting schemes and minima of Banzhaf values , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[29]  Subhash Khot,et al.  On the power of unique 2-prover 1-round games , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[30]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[31]  E. Leher An axiomatization of the Banzhaf value , 1988 .

[32]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[33]  M. Talagrand On Russo's Approximate Zero-One Law , 1994 .

[34]  Michel Talagrand,et al.  On boundaries and influences , 1997, Comb..

[35]  Nader H. Bshouty,et al.  On the Fourier spectrum of monotone functions , 1995, STOC '95.

[36]  Ryan O'Donnell,et al.  Every decision tree has an influential variable , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[37]  Ryan O'Donnell,et al.  On the Fourier tails of bounded functions over the discrete cube , 2006, STOC '06.

[38]  Dana Ron,et al.  Testing Computability by Width-Two OBDDs , 2009, Electron. Colloquium Comput. Complex..

[39]  M. Jerrum Counting, Sampling and Integrating: Algorithms and Complexity , 2003 .

[40]  Irit Dinur,et al.  The importance of being biased , 2002, STOC '02.

[41]  Ronitt Rubinfeld,et al.  Approximating the Influence of Monotone Boolean Functions in $O(\sqrt{n})$ Query Complexity , 2011, APPROX-RANDOM.

[42]  Michel Talagrand,et al.  How much are increasing sets positively correlated? , 1996, Comb..

[43]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[44]  Guy Kindler,et al.  Testing juntas , 2002, J. Comput. Syst. Sci..

[45]  Joshua Brody,et al.  Property Testing Lower Bounds via Communication Complexity , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[46]  Ryan O'Donnell,et al.  Testing ±1-weight halfspace , 2009, APPROX-RANDOM.

[47]  Dana Ron,et al.  Testing Monotonicity , 2000, Comb..

[48]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[49]  Eric Blais Testing juntas nearly optimally , 2009, STOC '09.