Numerical method for unsteady 3D Navier-Stokes equations in velocity-vorticity form

Abstract A finite difference method is presented to solve the 3D Navier-Stokes equations in velocity-vorticity form. Several systems of equations in velocity-vorticity form have been discussed. Applications of the method for flows around both a cube and a sphere are realized. The comparisons between the results of the present formulation and those of the velocity-pressure formulation or the experimental data show that the present method is consistent.

[1]  Jens Nørkær Sørensen,et al.  Vorticity-Velocity Formulation of the Navier-Stokes Equation for Aerodynamic Flows , 1995 .

[2]  Hermann F. Fasel,et al.  Numerical investigation of the three-dimensional development in boundary-layer transition , 1987 .

[3]  Thomas B. Gatski,et al.  A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables , 1982 .

[4]  Ira D. Jacobson,et al.  Magnus Characteristics of Arbitrary Rotating Bodies. , 1973 .

[5]  B. Farouk,et al.  A COUPLED SOLUTION OF THE VORTICITY-VELOCITY FORMULATION OF THE INCOMPRESSIBLE NAVIER- STOKES EQUATIONS , 1985 .

[6]  Hermann F. Fasel,et al.  Investigation of the stability of boundary layers by a finite-difference model of the Navier—Stokes equations , 1976, Journal of Fluid Mechanics.

[7]  G. Guj,et al.  Numerical solutions of high‐Re recirculating flows in vorticity‐velocity form , 1988 .

[8]  F. Wubs Notes on numerical fluid mechanics , 1985 .

[9]  Damien Tromeur-Dervout,et al.  On the 3D multigrid and ADI algorithms for the numerical solution of Navier-Stokes equations on distributed memory multiprocessors , 1992 .

[10]  F. Stella,et al.  A vorticity-velocity method for the numerical solution of 3D incompressible flows , 1993 .

[11]  Urmila Ghia,et al.  A direct algorithm for solution of incompressible three-dimensional unsteady Navier-Stokes equations , 1987 .

[12]  Sur la formulation vitesse-tourbillon des équations de Navier-Stokes en écoulement incompressible , 1991 .

[13]  O. Daube Resolution of the 2D Navier-Stokes Equations in Velocity-Vorticity Form by Means of an Influence Matrix Technique , 1992 .

[14]  S. Cheng,et al.  Numerical Solution of a Uniform Flow over a Sphere at Intermediate Reynolds Numbers , 1969 .

[15]  Paolo Orlandi,et al.  Vorticity—velocity formulation for high Re flows , 1987 .

[16]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[17]  S. Dennis,et al.  Calculation of the steady flow past a sphere at low and moderate Reynolds numbers , 1971, Journal of Fluid Mechanics.

[18]  Vorticity—velocity formulation in the computation of flows in multiconnected domains , 1989 .

[19]  T. Loc,et al.  Numerical solution of the early stage of the unsteady viscous flow around a circular cylinder: a comparison with experimental visualization and measurements , 1985, Journal of Fluid Mechanics.

[20]  Thomas B. Gatski,et al.  The numerical solution of the Navier-Stokes equations for 3-dimensional, unsteady, incompressible flows by compact schemes , 1989 .

[21]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[22]  S. Dennis,et al.  An h4 accurate vorticity-velocity formulation for calculating flow past a cylinder , 1995 .

[23]  T. Gatski,et al.  The structure and dynamics of bubble-type vortex breakdown , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Thomas B. Gatski,et al.  Review of incompressible fluid flow computations using the vorticity-velocity formulation , 1991 .

[25]  Pierre Sagaut Simulations numeriques d'ecoulements decolles avec des modeles de sous-maille , 1995 .

[26]  Derek B. Ingham,et al.  Finite-difference methods for calculating steady incompressible flows in three dimensions , 1979 .

[27]  H. Schlichting Boundary Layer Theory , 1955 .

[28]  Charles G. Speziale,et al.  On the advantages of the vorticity-velocity formulations of the equations of fluid dynamics , 1986 .