Signal reconstructing least-squares algorithm for chirp signal parameters estimation

In this paper, we proposed signal reconstructing least-square (SRLS) technique for estimating the chirp rate and initial frequency of chirp signal. The technique is simplicity, accuracy, and ease of on-line or off-line implementation. At low input signal-to-noise ratio, the estimates are unbiased and achieve Cramer- Rao bound (CRB). Simulation demonstrated the effectiveness and peformance.

[1]  T. Abatzoglou,et al.  "Fast maximum likelihood joint estimation of frequency and frequency rate" , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Björn E. Ottersten,et al.  Chirp parameter estimation from a sample covariance matrix , 2001, IEEE Trans. Signal Process..

[3]  T. Abatzoglou Fast Maximnurm Likelihood Joint Estimation of Frequency and Frequency Rate , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Georgios B. Giannakis,et al.  Estimating random amplitude polynomial phase signals: a cyclostationary approach , 1995, IEEE Trans. Signal Process..

[5]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Bernard Mulgrew,et al.  Iterative frequency estimation by interpolation on Fourier coefficients , 2005, IEEE Transactions on Signal Processing.

[7]  B. Porat,et al.  Linear FM signal parameter estimation from discrete-time observations , 1991 .

[8]  F. Taylor,et al.  Estimation of instantaneous frequency using the discrete Wigner distribution , 1990 .

[9]  Boaz Porat,et al.  Estimation and classification of polynomial-phase signals , 1991, IEEE Trans. Inf. Theory.

[10]  Zhou Siyong,et al.  A novel sequential estimation algorithm for chirp signal parameters , 2003, International Conference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003.