Permuted scaled matching

Scaled matching and permutation matching are two well known paradigms in the domain of pattern matching. Scaled matching refers to finding an occurrence of a pattern which is enlarged proportionally by some scale k within a larger text. Permutation matching is the problem of finding all substrings within a text where the character statistics of the substring and the pattern are the same. Permutation matching is easy, while scaled matching requires innovative solutions. One interesting setting of applications is the merge of the two. The problem of scaled permuted matching (i.e. first permuting and then scaling) has been addressed and solved optimally. However, it was left as an open problem whether there are efficient algorithms for permuted scaled matching. In this paper we solve the problem efficiently in a deterministic setting and optimally in a randomized setting.

[1]  Moshe Lewenstein,et al.  Efficient one-dimensional real scaled matching , 2007, J. Discrete Algorithms.

[2]  M. Fischer,et al.  STRING-MATCHING AND OTHER PRODUCTS , 1974 .

[3]  Donald E. Knuth,et al.  Fast Pattern Matching in Strings , 1977, SIAM J. Comput..

[4]  Gad M. Landau,et al.  Scaled and permuted string matching , 2004, Inf. Process. Lett..

[5]  Richard M. Karp,et al.  Efficient Randomized Pattern-Matching Algorithms , 1987, IBM J. Res. Dev..

[6]  Raphael Yuster,et al.  Near Linear Time Construction of an Approximate Index for All Maximum Consecutive Sub-sums of a Sequence , 2012, CPM.

[7]  Esko Ukkonen,et al.  A Comparison of Approximate String Matching Algorithms , 1996 .

[8]  Moshe Lewenstein,et al.  Real Two Dimensional Scaled Matching , 2007, Algorithmica.

[9]  Mohammad Sohel Rahman,et al.  Sub-quadratic time and linear space data structures for permutation matching in binary strings , 2012, J. Discrete Algorithms.

[10]  Zsuzsanna Lipták,et al.  Algorithms for Jumbled Pattern Matching in Strings , 2011, Int. J. Found. Comput. Sci..

[11]  Zvi Galil,et al.  Time-Space-Optimal String Matching , 1983, J. Comput. Syst. Sci..

[12]  Wojciech Rytter,et al.  Fast Algorithms for Abelian Periods in Words and Greatest Common Divisor Queries , 2013, STACS.

[13]  Moshe Lewenstein,et al.  On Hardness of Jumbled Indexing , 2014, ICALP.

[14]  Arnold L. Rosenberg,et al.  Rapid identification of repeated patterns in strings, trees and arrays , 1972, STOC.

[15]  Robert S. Boyer,et al.  A fast string searching algorithm , 1977, CACM.

[16]  Zsuzsanna Lipták,et al.  Searching for Jumbled Patterns in Strings , 2009, Stringology.

[17]  Moshe Lewenstein,et al.  Clustered Integer 3SUM via Additive Combinatorics , 2015, STOC.

[18]  Amihood Amir,et al.  Alphabet-Independent and Scaled Dictionary Matching , 2000, J. Algorithms.

[19]  Giorgio Satta,et al.  Efficient text fingerprinting via Parikh mapping , 2003, J. Discrete Algorithms.

[20]  Moshe Lewenstein,et al.  Real scaled matching , 2000, SODA '00.

[21]  Uzi Vishkin,et al.  Deterministic Sampling - A New Technique for Fast Pattern Matching , 1991, SIAM J. Comput..

[22]  J. Ian Munro,et al.  Permuted Scaled Matching , 2014, CPM.

[23]  Amihood Amir,et al.  Faster Two Dimensional Scaled Matching , 2008, Algorithmica.

[24]  Vinod Patidar,et al.  Image Encryption through a Novel Permutation-Substitution Scheme Based on Chaotic Standard Map , 2010, 2010 International Workshop on Chaos-Fractal Theories and Applications.

[25]  Zsuzsanna Lipták,et al.  On Approximate Jumbled Pattern Matching in Strings , 2011, Theory of Computing Systems.

[26]  Wojciech Rytter,et al.  Efficient Indexes for Jumbled Pattern Matching with Constant-Sized Alphabet , 2013, ESA.

[27]  Gad M. Landau,et al.  Efficient pattern matching with scaling , 1990, SODA '90.

[28]  G. Sathishkumar,et al.  Image encryption using random pixel permutation by chaotic mapping , 2012, 2012 IEEE Symposium on Computers & Informatics (ISCI).