Spectroscopic Confirmation of CEERS NIRCam-selected Galaxies at z ≃ 8–10

We present JWST/NIRSpec prism spectroscopy of seven galaxies selected from Cosmic Evolution Early Release Science (CEERS) survey NIRCam imaging with photometric redshifts z phot > 8. We measure emission line redshifts of z = 7.65 and 8.64 for two galaxies. For two other sources without securely detected emission lines we measure z=9.77−0.29+0.37 and 10.01−0.19+0.14 by fitting model spectral templates to the prism data, from which we detect continuum breaks consistent with Lyα opacity from a mostly neutral intergalactic medium. The presence of strong breaks and the absence of strong emission lines give high confidence that these two galaxies have redshifts z > 9.6, but the redshift values derived from the breaks alone have large uncertainties given the low spectral resolution and relatively low S/N of the CEERS NIRSpec prism data. The two z ∼ 10 sources observed are relatively luminous (M UV < −20), with blue continua (−2.3 ≲ β ≲ −1.9) and low dust attenuation ( AV≃0.15−0.1+0.3 ); and at least one of them has a high stellar mass for a galaxy at that redshift ( log(M⋆/M⊙)≃9.3−0.3+0.2 ). Considered together with spectroscopic observations of other CEERS NIRCam-selected high-z galaxy candidates in the literature, we find a high rate of redshift confirmation and low rate of confirmed interlopers (8%). Ten out of 35 z > 8 candidates with CEERS NIRSpec spectroscopy do not have secure redshifts, but the absence of emission lines in their spectra is consistent with redshifts z > 9.6. We find that z > 8 photometric redshifts are generally in agreement (within their uncertainties) with the spectroscopic values, but also that the photometric redshifts tend to be slightly overestimated (〈Δz〉 = 0.45 ± 0.11), suggesting that current templates do not fully describe the spectra of very-high-z sources. Overall, the spectroscopy solidifies photometric redshift evidence for a high spatial density of bright galaxies at z > 8 compared to theoretical model predictions, and further disfavors an accelerated decline in the integrated UV luminosity density at z > 8.

[1]  L. Y. Aaron Yung,et al.  CEERS Key Paper. VI. JWST/MIRI Uncovers a Large Population of Obscured AGN at High Redshifts , 2023, The Astrophysical Journal Letters.

[2]  A. Dekel,et al.  Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts , 2023, Monthly Notices of the Royal Astronomical Society.

[3]  L. Y. Aaron Yung,et al.  CEERS Spectroscopic Confirmation of NIRCam-selected z ≳ 8 Galaxy Candidates with JWST/NIRSpec: Initial Characterization of Their Properties , 2023, The Astrophysical Journal Letters.

[4]  A. Fontana,et al.  Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program , 2023, Astronomy &amp; Astrophysics.

[5]  L. Y. Aaron Yung,et al.  CEERS Key Paper IV: Galaxies at $4, 2022, 2301.00027.

[6]  P. Papaderos,et al.  The resolved chemical composition of the starburst dwarf galaxy CGCG007-025: Direct method versus photoionization model fitting , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  R. Bouwens,et al.  UV luminosity density results at z > 8 from the first JWST/NIRCam Fields: Limitations of early data sets and the need for spectroscopy , 2022, Monthly Notices of the Royal Astronomical Society.

[8]  Copenhagen,et al.  Identification and properties of intense star-forming galaxies at redshifts z > 10 , 2022, Nature Astronomy.

[9]  H. Rix,et al.  Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2 , 2022, Nature Astronomy.

[10]  A. Fontana,et al.  The Art of Measuring Physical Parameters in Galaxies: A Critical Assessment of Spectral Energy Distribution Fitting Techniques , 2022, The Astrophysical Journal.

[11]  S. Lilly,et al.  EIGER. II. First Spectroscopic Characterization of the Young Stars and Ionized Gas Associated with Strong Hβ and [O iii] Line Emission in Galaxies at z = 5–7 with JWST , 2022, The Astrophysical Journal.

[12]  L. Y. Aaron Yung,et al.  CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST , 2022, The Astrophysical Journal Letters.

[13]  L. Y. Aaron Yung,et al.  CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results , 2022, The Astrophysical Journal Letters.

[14]  L. Y. Aaron Yung,et al.  CEERS Key Paper. IV. A Triality in the Nature of HST-dark Galaxies , 2022, The Astrophysical Journal Letters.

[15]  A. Fontana,et al.  The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST , 2022, Nature.

[16]  M. Nonino,et al.  A magnified compact galaxy at redshift 9.51 with strong nebular emission lines , 2022, Science.

[17]  A. Grazian,et al.  JWST unveils heavily obscured (active and passive) sources up to z~13 , 2022, 2208.02825.

[18]  L. Y. Aaron Yung,et al.  Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations , 2022, The Astrophysical Journal Letters.

[19]  M. Oguri,et al.  A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch , 2022, The Astrophysical Journal Supplement Series.

[20]  M. Boylan-Kolchin Stress testing ΛCDM with high-redshift galaxy candidates , 2022, Nature Astronomy.

[21]  S. Charlot,et al.  On the ages of bright galaxies ∼500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[22]  A. Pallottini,et al.  On the stunning abundance of super-early, luminous galaxies revealed by JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[23]  A. Fontana,et al.  The GLASS-JWST Early Release Science Program. I. Survey Design and Release Plans , 2022, The Astrophysical Journal.

[24]  T. Treu,et al.  The brightest galaxies at cosmic dawn , 2022, Monthly Notices of the Royal Astronomical Society.

[25]  L.Yang,et al.  Early Results From GLASS-JWST. XII: The Morphology of Galaxies at the Epoch of Reionization , 2022, 2207.13527.

[26]  G. Brammer,et al.  A population of red candidate massive galaxies ~600 Myr after the Big Bang , 2022, Nature.

[27]  L. Y. Aaron Yung,et al.  The Physical Conditions of Emission-line Galaxies at Cosmic Dawn from JWST/NIRSpec Spectroscopy in the SMACS 0723 Early Release Observations , 2022, The Astrophysical Journal.

[28]  L. Y. Aaron Yung,et al.  A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging , 2022, The Astrophysical Journal Letters.

[29]  J. Kneib,et al.  Revealing Galaxy Candidates out to $z \sim 16$ with JWST Observations of the Lensing Cluster SMACS0723 , 2022, 2207.12338.

[30]  J. Dunlop,et al.  The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 – 15 from deep JWST and ground-based near-infrared imaging , 2022, Monthly Notices of the Royal Astronomical Society.

[31]  A. Zitrin,et al.  First Batch of Candidate Galaxies at Redshifts 11 to 20 Revealed by the James Webb Space Telescope Early Release Observations , 2022, 2207.11558.

[32]  C. Conselice,et al.  Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field , 2022, Monthly Notices of the Royal Astronomical Society.

[33]  A. Fontana,et al.  Early Results from GLASS-JWST. III. Galaxy Candidates at z ∼9–15 , 2022, The Astrophysical Journal Letters.

[34]  R. Bouwens,et al.  Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST , 2022, The Astrophysical Journal Letters.

[35]  S. Finkelstein,et al.  On the Coevolution of the AGN and Star-forming Galaxy Ultraviolet Luminosity Functions at 3 < z < 9 , 2022, The Astrophysical Journal.

[36]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[37]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS) , 2022, Astronomy & Astrophysics.

[38]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities , 2022, Astronomy & Astrophysics.

[39]  L. Y. Aaron Yung,et al.  Mock light-cones and theory friendly catalogues for the CANDELS survey , 2021 .

[40]  L. Ho,et al.  Evidence for GN-z11 as a luminous galaxy at redshift 10.957 , 2020, Nature Astronomy.

[41]  J. Dunlop,et al.  A lack of evolution in the very bright end of the galaxy luminosity function from z ≃ 8 to 10 , 2019, Monthly Notices of the Royal Astronomical Society.

[42]  Benjamin D. Johnson,et al.  The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3 , 2019, Monthly Notices of the Royal Astronomical Society.

[43]  O. Fèvre,et al.  The Brightest z ≳ 8 Galaxies over the COSMOS UltraVISTA Field , 2019, The Astrophysical Journal.

[44]  S. Finkelstein,et al.  Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction , 2019, The Astrophysical Journal.

[45]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts for JWST – II. Physical properties and scaling relations for galaxies at z = 4–10 , 2019, Monthly Notices of the Royal Astronomical Society.

[47]  Henry C. Ferguson,et al.  Nonparametric Star Formation History Reconstruction with Gaussian Processes. I. Counting Major Episodes of Star Formation , 2019, The Astrophysical Journal.

[48]  Benjamin D. Johnson,et al.  How to Measure Galaxy Star Formation Histories. II. Nonparametric Models , 2018, The Astrophysical Journal.

[49]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[50]  Isaac Newton Group of Telescopes,et al.  A simultaneous search for High-$z$ LAEs and LBGs in the SHARDS survey , 2018, 1805.00477.

[51]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts forJWST– I. UV luminosity functions atz = 4–10 , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[53]  R. Davé,et al.  Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.

[54]  D. Sobral,et al.  Slicing COSMOS with SC4K: the evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6 , 2017, 1712.04451.

[55]  R. Bouwens,et al.  The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.

[56]  UK.,et al.  Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results , 2017, Publications of the Astronomical Society of Australia.

[57]  A. Fontana,et al.  CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip , 2017, 1703.05768.

[58]  A. Fontana,et al.  EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT z = 4 , 2016, 1611.02713.

[59]  M. Hayes Lyman Alpha Emitting Galaxies in the Nearby Universe , 2015, Publications of the Astronomical Society of Australia.

[60]  R. Somerville,et al.  Star formation in semi-analytic galaxy formation models with multiphase gas , 2015, 1503.00755.

[61]  M. Dijkstra Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.

[62]  B. Milvang-Jensen,et al.  A 10 deg2 Lyman α survey at z=8.8 with spectroscopic follow-up: strong constraints on the luminosity function and implications for other surveys , 2014, 1402.6697.

[63]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[64]  John Krist,et al.  Science opportunities with the near-IR camera (NIRCam) on the James Webb Space Telescope (JWST) , 2012, Other Conferences.

[65]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[66]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[67]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[68]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[69]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[70]  Marcia J. Rieke,et al.  Overview of James Webb Space Telescope and NIRCam's Role , 2005, SPIE Optics + Photonics.

[71]  Spain.,et al.  Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.

[72]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[73]  Marcia J. Rieke,et al.  NGST NIRCam Scientific Program and Design Concept , 2003, SPIE Astronomical Telescopes + Instrumentation.

[74]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[75]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[76]  P. Storey,et al.  Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases , 2000 .

[77]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[78]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[79]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[80]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[81]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[82]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[83]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[84]  Benjamin D. Johnson,et al.  How to Measure Galaxy Star Formation Histories. I. Parametric Models , 2019 .

[85]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .