Spectroscopic Confirmation of CEERS NIRCam-selected Galaxies at z ≃ 8–10
暂无分享,去创建一个
L. Y. Aaron Yung | R. Davé | A. Fontana | B. Weiner | H. Ferguson | E. Gawiser | M. Huertas-Company | B. Mobasher | S. Finkelstein | M. Giavalisco | N. Hathi | A. Dekel | B. Holwerda | J. Zavala | J. Kartaltepe | S. Wilkins | T. Hutchison | P. Santini | D. Burgarella | P. Pérez-González | M. Castellano | M. Dickinson | B. Holwerda | S. Fujimoto | R. Amorín | L. Bisigello | S. Harish | C. Papovich | M. Hirschmann | M. Bagley | I. Jung | N. Pirzkal | R. Simons | Xin Wang | R. Larson | Alexander de la Vega | Caitlin Rose | R. Lucas | Bren E. Backhaus | J. Trump | A. Calabró | Alexa M. Morales | Katherine Chworowsky | Justin W. Cole | Guang Yang | N. Cleri | Pablo Arrabal Haro | V. Fernández | A. Koekemoer | B. Weiner | R. Lucas | P. Arrabal Haro | B. E. Backhaus | A. de la Vega | B. Backhaus
[1] L. Y. Aaron Yung,et al. CEERS Key Paper. VI. JWST/MIRI Uncovers a Large Population of Obscured AGN at High Redshifts , 2023, The Astrophysical Journal Letters.
[2] A. Dekel,et al. Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts , 2023, Monthly Notices of the Royal Astronomical Society.
[3] L. Y. Aaron Yung,et al. CEERS Spectroscopic Confirmation of NIRCam-selected z ≳ 8 Galaxy Candidates with JWST/NIRSpec: Initial Characterization of Their Properties , 2023, The Astrophysical Journal Letters.
[4] A. Fontana,et al. Closing in on the sources of cosmic reionization: first results from the GLASS-JWST program , 2023, Astronomy & Astrophysics.
[5]
L. Y. Aaron Yung,et al.
CEERS Key Paper IV: Galaxies at $4
[6] P. Papaderos,et al. The resolved chemical composition of the starburst dwarf galaxy CGCG007-025: Direct method versus photoionization model fitting , 2022, Monthly Notices of the Royal Astronomical Society.
[7] R. Bouwens,et al. UV luminosity density results at z > 8 from the first JWST/NIRCam Fields: Limitations of early data sets and the need for spectroscopy , 2022, Monthly Notices of the Royal Astronomical Society.
[8] Copenhagen,et al. Identification and properties of intense star-forming galaxies at redshifts z > 10 , 2022, Nature Astronomy.
[9] H. Rix,et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2 , 2022, Nature Astronomy.
[10] A. Fontana,et al. The Art of Measuring Physical Parameters in Galaxies: A Critical Assessment of Spectral Energy Distribution Fitting Techniques , 2022, The Astrophysical Journal.
[11] S. Lilly,et al. EIGER. II. First Spectroscopic Characterization of the Young Stars and Ionized Gas Associated with Strong Hβ and [O iii] Line Emission in Galaxies at z = 5–7 with JWST , 2022, The Astrophysical Journal.
[12] L. Y. Aaron Yung,et al. CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST , 2022, The Astrophysical Journal Letters.
[13] L. Y. Aaron Yung,et al. CEERS Epoch 1 NIRCam Imaging: Reduction Methods and Simulations Enabling Early JWST Science Results , 2022, The Astrophysical Journal Letters.
[14] L. Y. Aaron Yung,et al. CEERS Key Paper. IV. A Triality in the Nature of HST-dark Galaxies , 2022, The Astrophysical Journal Letters.
[15] A. Fontana,et al. The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST , 2022, Nature.
[16] M. Nonino,et al. A magnified compact galaxy at redshift 9.51 with strong nebular emission lines , 2022, Science.
[17] A. Grazian,et al. JWST unveils heavily obscured (active and passive) sources up to z~13 , 2022, 2208.02825.
[18] L. Y. Aaron Yung,et al. Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations , 2022, The Astrophysical Journal Letters.
[19] M. Oguri,et al. A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch , 2022, The Astrophysical Journal Supplement Series.
[20] M. Boylan-Kolchin. Stress testing ΛCDM with high-redshift galaxy candidates , 2022, Nature Astronomy.
[21] S. Charlot,et al. On the ages of bright galaxies ∼500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST , 2022, Monthly Notices of the Royal Astronomical Society.
[22] A. Pallottini,et al. On the stunning abundance of super-early, luminous galaxies revealed by JWST , 2022, Monthly Notices of the Royal Astronomical Society.
[23] A. Fontana,et al. The GLASS-JWST Early Release Science Program. I. Survey Design and Release Plans , 2022, The Astrophysical Journal.
[24] T. Treu,et al. The brightest galaxies at cosmic dawn , 2022, Monthly Notices of the Royal Astronomical Society.
[25] L.Yang,et al. Early Results From GLASS-JWST. XII: The Morphology of Galaxies at the Epoch of Reionization , 2022, 2207.13527.
[26] G. Brammer,et al. A population of red candidate massive galaxies ~600 Myr after the Big Bang , 2022, Nature.
[27] L. Y. Aaron Yung,et al. The Physical Conditions of Emission-line Galaxies at Cosmic Dawn from JWST/NIRSpec Spectroscopy in the SMACS 0723 Early Release Observations , 2022, The Astrophysical Journal.
[28] L. Y. Aaron Yung,et al. A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging , 2022, The Astrophysical Journal Letters.
[29] J. Kneib,et al. Revealing Galaxy Candidates out to $z \sim 16$ with JWST Observations of the Lensing Cluster SMACS0723 , 2022, 2207.12338.
[30] J. Dunlop,et al. The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 – 15 from deep JWST and ground-based near-infrared imaging , 2022, Monthly Notices of the Royal Astronomical Society.
[31] A. Zitrin,et al. First Batch of Candidate Galaxies at Redshifts 11 to 20 Revealed by the James Webb Space Telescope Early Release Observations , 2022, 2207.11558.
[32] C. Conselice,et al. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field , 2022, Monthly Notices of the Royal Astronomical Society.
[33] A. Fontana,et al. Early Results from GLASS-JWST. III. Galaxy Candidates at z ∼9–15 , 2022, The Astrophysical Journal Letters.
[34] R. Bouwens,et al. Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST , 2022, The Astrophysical Journal Letters.
[35] S. Finkelstein,et al. On the Coevolution of the AGN and Star-forming Galaxy Ultraviolet Luminosity Functions at 3 < z < 9 , 2022, The Astrophysical Journal.
[36] Miguel de Val-Borro,et al. The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.
[37] H. Rix,et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS) , 2022, Astronomy & Astrophysics.
[38] H. Rix,et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities , 2022, Astronomy & Astrophysics.
[39] L. Y. Aaron Yung,et al. Mock light-cones and theory friendly catalogues for the CANDELS survey , 2021 .
[40] L. Ho,et al. Evidence for GN-z11 as a luminous galaxy at redshift 10.957 , 2020, Nature Astronomy.
[41] J. Dunlop,et al. A lack of evolution in the very bright end of the galaxy luminosity function from z ≃ 8 to 10 , 2019, Monthly Notices of the Royal Astronomical Society.
[42] Benjamin D. Johnson,et al. The VANDELS survey: the star-formation histories of massive quiescent galaxies at 1.0 < z < 1.3 , 2019, Monthly Notices of the Royal Astronomical Society.
[43] O. Fèvre,et al. The Brightest z ≳ 8 Galaxies over the COSMOS UltraVISTA Field , 2019, The Astrophysical Journal.
[44] S. Finkelstein,et al. Conditions for Reionizing the Universe with a Low Galaxy Ionizing Photon Escape Fraction , 2019, The Astrophysical Journal.
[45] D. Narayanan,et al. simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.
[46] L. Y. Aaron Yung,et al. Semi-analytic forecasts for JWST – II. Physical properties and scaling relations for galaxies at z = 4–10 , 2019, Monthly Notices of the Royal Astronomical Society.
[47] Henry C. Ferguson,et al. Nonparametric Star Formation History Reconstruction with Gaussian Processes. I. Counting Major Episodes of Star Formation , 2019, The Astrophysical Journal.
[48] Benjamin D. Johnson,et al. How to Measure Galaxy Star Formation Histories. II. Nonparametric Models , 2018, The Astrophysical Journal.
[49] D. Corre,et al. CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.
[50] Isaac Newton Group of Telescopes,et al. A simultaneous search for High-$z$ LAEs and LBGs in the SHARDS survey , 2018, 1805.00477.
[51] L. Y. Aaron Yung,et al. Semi-analytic forecasts forJWST– I. UV luminosity functions atz = 4–10 , 2018, Monthly Notices of the Royal Astronomical Society.
[52] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[53] R. Davé,et al. Inferring the star formation histories of massive quiescent galaxies with bagpipes: evidence for multiple quenching mechanisms , 2017, Monthly Notices of the Royal Astronomical Society.
[54] D. Sobral,et al. Slicing COSMOS with SC4K: the evolution of typical Ly α emitters and the Ly α escape fraction from z ∼ 2 to 6 , 2017, 1712.04451.
[55] R. Bouwens,et al. The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.
[56] UK.,et al. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results , 2017, Publications of the Astronomical Society of Australia.
[57] A. Fontana,et al. CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip , 2017, 1703.05768.
[58] A. Fontana,et al. EVIDENCE FOR REDUCED SPECIFIC STAR FORMATION RATES IN THE CENTERS OF MASSIVE GALAXIES AT z = 4 , 2016, 1611.02713.
[59] M. Hayes. Lyman Alpha Emitting Galaxies in the Nearby Universe , 2015, Publications of the Astronomical Society of Australia.
[60] R. Somerville,et al. Star formation in semi-analytic galaxy formation models with multiphase gas , 2015, 1503.00755.
[61] M. Dijkstra. Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.
[62] B. Milvang-Jensen,et al. A 10 deg2 Lyman α survey at z=8.8 with spectroscopic follow-up: strong constraints on the luminosity function and implications for other surveys , 2014, 1402.6697.
[63] R. Ellis,et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.
[64] John Krist,et al. Science opportunities with the near-IR camera (NIRCam) on the James Webb Space Telescope (JWST) , 2012, Other Conferences.
[65] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[66] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[67] Chien Y. Peng,et al. DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.
[68] V. Buat,et al. Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.
[69] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[70] Marcia J. Rieke,et al. Overview of James Webb Space Telescope and NIRCam's Role , 2005, SPIE Optics + Photonics.
[71] Spain.,et al. Star formation and dust attenuation properties in galaxies from a statistical ultraviolet‐to‐far‐infrared analysis , 2005, astro-ph/0504434.
[72] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[73] Marcia J. Rieke,et al. NGST NIRCam Scientific Program and Design Concept , 2003, SPIE Astronomical Telescopes + Instrumentation.
[74] Mauro Giavalisco,et al. Lyman-Break Galaxies , 2002 .
[75] L. Ho,et al. Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.
[76] P. Storey,et al. Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases , 2000 .
[77] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[78] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[79] A. Kinney,et al. Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .
[80] Y. Pei,et al. Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .
[81] J. B. Oke,et al. Secondary standard stars for absolute spectrophotometry , 1983 .
[82] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[83] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[84] Benjamin D. Johnson,et al. How to Measure Galaxy Star Formation Histories. I. Parametric Models , 2019 .
[85] D. Osterbrock,et al. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .