An efficient design of CORDIC in Quantum-dot cellular automata technology

ABSTRACT Power dissipation of future-integrated systems, consisting of a numberless of devices, is a challenge that cannot be easily solved by classical technologies. Quantum-dot Cellular Automata (QCA) is a Field-Coupled Nanotechnology (FCN) and a potential alternative to traditional CMOS technologies. It offers various features like extremely low-power dissipation, very high operating frequency and nanoscale feature size. This study presents a novel design of CORDIC circuit based on QCA technology. The proposed circuit is based on several proposed QCA sub-modules as adder and Flip-Flop. To design and verify the proposed architecture, QCADesigner tool is employed and power consumption is estimated using QCAPro software. The proposed QCA CORDIC achieves about 69% reduction in power and area compared to previous existing designs. The outcome of this work can open up a new window of opportunity for the design of the CORDIC module and can be used in low-power signal and image processing systems.

[1]  Shanq-Jang Ruan,et al.  Low-power and high-quality Cordic-based Loeffler DCT for signal processing , 2007, IET Circuits Devices Syst..

[2]  Saket Srivastava,et al.  QCAPro - An error-power estimation tool for QCA circuit design , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[3]  Mohammad Hossein Moaiyeri,et al.  Efficient and Robust SRAM Cell Design Based on Quantum-Dot Cellular Automata , 2018 .

[4]  Graham A. Jullien,et al.  Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata , 2006, Proceedings of the IEEE.

[5]  Earl E. Swartzlander,et al.  Multipliers with coplanar crossings for Quantum-Dot Cellular Automata , 2010, 10th IEEE International Conference on Nanotechnology.

[6]  Jing Huang,et al.  Design and Test of Digital Circuits by Quantum-Dot Cellular Automata , 2007 .

[7]  Liyi Xiao,et al.  CORDIC Based Fast Radix-2 DCT Algorithm , 2013, IEEE Signal Processing Letters.

[8]  J. S. Walther,et al.  A unified algorithm for elementary functions , 1899, AFIPS '71 (Spring).

[9]  裕幸 飯田,et al.  International Technology Roadmap for Semiconductors 2003の要求清浄度について - シリコンウエハ表面と雰囲気環境に要求される清浄度, 分析方法の現状について - , 2004 .

[10]  Yong-Bin Kim,et al.  Quantum-dot cellular automata SPICE macro model , 2005, GLSVLSI '05.

[11]  Supriya Aggarwal,et al.  Area-Time Efficient Scaling-Free CORDIC Using Generalized Micro-Rotation Selection , 2012, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[12]  Tanay Chattopadhyay,et al.  Universal shift register implementation using quantum dot cellular automata , 2016 .

[13]  S. Srivastava,et al.  Are QCA cryptographic circuits resistant to power analysis attack? , 2012, IEEE Transactions on Nanotechnology.

[14]  Keivan Navi,et al.  Designing quantum-dot cellular automata counters with energy consumption analysis , 2015, Microprocess. Microsystems.

[15]  Bibhash Sen,et al.  Realization of processing In-memory computing architecture using Quantum Dot Cellular Automata , 2017, Microprocess. Microsystems.

[16]  Keivan Navi,et al.  Designing quantum-dot cellular automata circuits using a robust one layer crossover scheme , 2014 .

[17]  Earl E. Swartzlander,et al.  Parallel multipliers for Quantum-Dot Cellular Automata , 2009, 2009 IEEE Nanotechnology Materials and Devices Conference.

[18]  José Augusto Miranda Nacif,et al.  A Placement and routing algorithm for Quantum-dot Cellular Automata , 2016, 2016 29th Symposium on Integrated Circuits and Systems Design (SBCCI).

[19]  Trailokya Nath Sasamal,et al.  Efficient design of reversible alu in quantum-dot cellular automata , 2016 .

[20]  Emre Ozen,et al.  Hardware-Oriented Algorithm for Quaternion-Valued Matrix Decomposition , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[21]  Jack E. Volder The Birth of Cordic , 2000, J. VLSI Signal Process..

[22]  Earl E. Swartzlander,et al.  A scaled DCT architecture with the CORDIC algorithm , 2002, IEEE Trans. Signal Process..

[23]  Reza Sabbaghi-Nadooshan,et al.  A Novel Modular Decoder Implementation in Quantum-Dot Cellular Automata (QCA) , 2011, 2011 International Conference on Nanoscience, Technology and Societal Implications.

[24]  Mohammad Hossein Moaiyeri,et al.  Designing efficient QCA logical circuits with power dissipation analysis , 2015, Microelectron. J..

[25]  Yu Hen Hu,et al.  An efficient VLSI CORDIC array structure implementation of Toeplitz eigensystem solvers , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[26]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[27]  P. K. Bondyopadhyay,et al.  Moore's law governs the silicon revolution , 1998, Proc. IEEE.

[28]  Sang Yoon Park,et al.  Fixed-Point Analysis and Parameter Selections of MSR-CORDIC With Applications to FFT Designs , 2012, IEEE Transactions on Signal Processing.

[29]  Omar P. Vilela Neto,et al.  USE: A Universal, Scalable, and Efficient Clocking Scheme for QCA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[30]  Ashutosh Kumar Singh,et al.  Design of non‐restoring binary array divider in majority logic‐based QCA , 2016 .

[31]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[32]  S. Hamdioui,et al.  Why is CMOS scaling coming to an END? , 2008, 2008 3rd International Design and Test Workshop.

[33]  Keivan Navi,et al.  Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata , 2015, Microelectron. J..

[34]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[35]  Jack E. Volder The CORDIC Trigonometric Computing Technique , 1959, IRE Trans. Electron. Comput..

[36]  Tomás Lang,et al.  Redundant and On-Line CORDIC: Application to Matrix Triangularization and SVD , 1990, IEEE Trans. Computers.

[37]  P. P. Vaidyanathan,et al.  A unified approach to orthogonal digital filters and wave digital filters, based on LBR two-pair extraction , 1985 .

[38]  Radhouane Laajimi,et al.  Efficient design of BinDCT in quantum-dot cellular automata (QCA) technology , 2018, IET Image Process..

[39]  Paul Pop,et al.  Placement and Routing , 2016 .

[40]  Bharat Garg,et al.  RICO: A low power repetitive iteration CORDIC for DSP applications in portable devices , 2016, J. Syst. Archit..

[41]  Bouraoui Ouni,et al.  Design of efficient quantum Dot cellular automata (QCA) multiply accumulate (MAC) unit with power dissipation analysis , 2019, IET Circuits Devices Syst..

[42]  Keivan Navi,et al.  Design of Efficient and Testable n-Input Logic Gates in Quantum-Dot Cellular Automata , 2013 .

[43]  Swapna Banerjee,et al.  Modified virtually scaling-free adaptive CORDIC rotator algorithm and architecture , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[44]  Faranak Rabiei,et al.  Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate , 2017 .

[45]  K. Sridharan,et al.  50 Years of CORDIC: Algorithms, Architectures, and Applications , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.