Towards a lightweight task scheduling framework for cloud and edge platform

[1]  S. Alamouti,et al.  Hybrid Edge Cloud: A Pragmatic Approach for Decentralized Cloud Computing , 2022, IEEE Communications Magazine.

[2]  F. Turck,et al.  Fog Native Architecture: Intent-Based Workflows to Take Cloud Native toward the Edge , 2022, IEEE Communications Magazine.

[3]  D. Anagnostopoulos,et al.  Fog Node Self-Control Middleware: Enhancing context awareness towards autonomous decision making in Fog Colonies , 2022, Internet Things.

[4]  Sandeep Gupta Non-functional requirements elicitation for edge computing , 2022, Internet Things.

[5]  Nazar Khan,et al.  Machine Learning at the Network Edge: A Survey , 2019, ACM Comput. Surv..

[6]  Amit Kishor,et al.  Task Offloading in Fog Computing for Using Smart Ant Colony Optimization , 2021, Wireless Personal Communications.

[7]  Paul Davidsson,et al.  Quality attributes in edge computing for the Internet of Things: A systematic mapping study , 2020, Internet Things.

[8]  Hai Lin,et al.  A survey on computation offloading modeling for edge computing , 2020, J. Netw. Comput. Appl..

[9]  Mostafa Ghobaei-Arani,et al.  A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective , 2020, Comput. Networks.

[10]  Adel Nadjaran Toosi,et al.  Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy, benchmarks and standards for future research , 2020, Internet Things.

[11]  Mainak Adhikari,et al.  DPTO: A Deadline and Priority-Aware Task Offloading in Fog Computing Framework Leveraging Multilevel Feedback Queueing , 2020, IEEE Internet of Things Journal.

[12]  Reinout Eyckerman,et al.  Requirements for distributed task placement in the fog , 2020, Internet Things.

[13]  Ya-Shu Chen,et al.  Energy-Efficient Task Offloading for Time-Sensitive Applications in Fog Computing , 2019, IEEE Systems Journal.

[14]  Balázs Sonkoly,et al.  Towards Latency Sensitive Cloud Native Applications: A Performance Study on AWS , 2019, 2019 IEEE 12th International Conference on Cloud Computing (CLOUD).

[15]  Mainak Adhikari,et al.  Energy efficient offloading strategy in fog-cloud environment for IoT applications , 2019, Internet Things.

[16]  Satish Narayana Srirama,et al.  Edge Process Management: A case study on adaptive task scheduling in mobile IoT , 2019, Internet Things.

[17]  Prasant Mohapatra,et al.  Edge Cloud Offloading Algorithms: Issues, Methods, and Perspectives , 2018 .

[18]  Yang Yang,et al.  Fair Task Offloading among Fog Nodes in Fog Computing Networks , 2018, 2018 IEEE International Conference on Communications (ICC).

[19]  Lianping Chen,et al.  Microservices: Architecting for Continuous Delivery and DevOps , 2018, 2018 IEEE International Conference on Software Architecture (ICSA).

[20]  Min Dong,et al.  Multi-User Multi-Task Offloading and Resource Allocation in Mobile Cloud Systems , 2018, IEEE Transactions on Wireless Communications.

[21]  Min Chen,et al.  Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network , 2018, IEEE Journal on Selected Areas in Communications.

[22]  Saeed Sharifian,et al.  Cloudlet dynamic server selection policy for mobile task off-loading in mobile cloud computing using soft computing techniques , 2017, The Journal of Supercomputing.

[23]  Zdenek Becvar,et al.  Mobile Edge Computing: A Survey on Architecture and Computation Offloading , 2017, IEEE Communications Surveys & Tutorials.

[24]  Thomas Dreibholz,et al.  NorNet Core - A multi-homed research testbed , 2014, Comput. Networks.

[25]  Thomas Dreibholz,et al.  Overview and Evaluation of the Server Redundancy and Session Failover Mechanisms in the Reliable Server Pooling Framework , 2009 .

[26]  Nancy A. Lynch,et al.  Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services , 2002, SIGA.