Modeling the development of martian sublimation thermokarst landforms

Abstract Sublimation-thermokarst landforms result from collapse of the surface when ice is lost from the subsurface. On Mars, scalloped landforms with scales of decameters to kilometers are observed in the mid-latitudes and considered likely thermokarst features. We describe a landscape evolution model that couples diffusive mass movement and subsurface ice loss due to sublimation. Over periods of tens of thousands of Mars years under conditions similar to the present, the model produces scallop-like features similar to those on the martian surface, starting from much smaller initial disturbances. The model also indicates crater expansion when impacts occur in surfaces underlain by excess ice to some depth, with morphologies similar to observed landforms on the martian northern plains. In order to produce these landforms by sublimation, substantial quantities of excess ice are required, at least comparable to the vertical extent of the landform, and such ice must remain in adjacent terrain to support the non-deflated surface. We suggest that martian thermokarst features are consistent with formation by sublimation, without melting, and that significant thicknesses of very clean excess ice (up to many tens of meters, the depth of some scalloped depressions) are locally present in the martian mid-latitudes. Climate conditions leading to melting at significant depth are not required.

[1]  G. Neukum,et al.  Distribution and evolution of scalloped terrain in the southern hemisphere, Mars , 2010 .

[2]  N. Mangold Geomorphic analysis of lobate debris aprons on Mars at Mars Orbiter Camera scale: Evidence for ice sublimation initiated by fractures , 2003 .

[3]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[4]  B. Hallet,et al.  Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground , 2003 .

[5]  P. Dutilleul,et al.  Co-evolution of polygonal and scalloped terrains, southwestern Utopia Planitia, Mars , 2014 .

[6]  R. Phillips,et al.  SHARAD sounding radar on the Mars Reconnaissance Orbiter , 2007 .

[7]  Robert P. Sharp,et al.  Mars: Fretted and chaotic terrains , 1973 .

[8]  J. Holt,et al.  Thick, Excess Water Ice in Arcadia Planitia , 2014 .

[9]  M. Mellon,et al.  Recent gullies on Mars and the source of liquid water , 2001 .

[10]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[11]  R. Craddock,et al.  CRATER DEGRADATION IN THE MARTIAN HIGHLANDS: MORPHOMETRIC ANALYSIS OF THE SINUS SABAEUS REGION AND SIMULATION MODELING SUGGEST FLUVIAL PROCESSES. N. Forsberg-Taylor , 2004 .

[12]  F. Forget,et al.  History and anatomy of subsurface ice on Mars , 2012 .

[13]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[14]  S. V. Gasselt,et al.  Deposition and degradation of a volatile-rich layer in Utopia Planitia, and implications for climate history on Mars. , 2007 .

[15]  A. McEwen,et al.  HiRISE observations of fractured mounds: Possible Martian pingos , 2008 .

[16]  M. Kreslavsky,et al.  Patterned ground in martian high northern latitudes: Morphology and age constraints , 2013 .

[17]  Alfred S. McEwen,et al.  Expanded secondary craters in the Arcadia Planitia region, Mars: Evidence for tens of Myr-old shallow subsurface ice , 2015 .

[18]  J. Pelletier How do spiral troughs form on Mars , 2004 .

[19]  N. Thomas,et al.  Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE , 2010 .

[20]  J. Head,et al.  The ages of pedestal craters on Mars: Evidence for a late-Amazonian extended period of episodic emplacement of decameters-thick mid-latitude ice deposits , 2014 .

[21]  M. Church,et al.  Diffusion in Landscape Development Models: On The Nature of Basic Transport Relations , 1997 .

[22]  R. Greeley,et al.  The distribution of dust devil activity on Mars , 2008 .

[23]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[24]  R. Haberle,et al.  Atmospheric effects on the remote determination of thermal inertia on mars , 1991 .

[25]  Raymond E. Arvidson,et al.  Phoenix soil physical properties investigation , 2009 .

[26]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[27]  F. Costard,et al.  Evidence of an eolian ice-rich and stratified permafrost in Utopia Planitia, Mars , 2012 .

[28]  F. Costard,et al.  Thermokarst processes and the origin of crater-rim gullies in Utopia and western Elysium Planitia , 2007 .

[29]  James W. Head,et al.  Periods of active permafrost layer formation during the geological history of Mars: Implications for circum-polar and mid-latitude surface processes , 2008 .

[30]  O. Aharonson,et al.  Stability and exchange of subsurface ice on Mars , 2005 .

[31]  J. Head,et al.  Recent high-latitude resurfacing by a climate-related latitude-dependent mantle: Constraining age of emplacement from counts of small craters , 2012 .

[32]  K. Yoshikawa Origin of the polygons and the thickness of Vastitas Borealis Formation in Western Utopia Planitia on Mars , 2003 .

[33]  Shane Byrne,et al.  HiRISE observations of new impact craters exposing Martian ground ice , 2014 .

[34]  F. Costard,et al.  The Tuktoyaktuk Coastlands of northern Canada: A possible “wet” periglacial analog of Utopia Planitia, Mars , 2011 .

[35]  Kenneth L. Tanaka,et al.  Widespread loess-like deposit in the Martian northern lowlands identifies Middle Amazonian climate change , 2012 .

[36]  A. McEwen,et al.  Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE) , 2009 .

[37]  F. Costard,et al.  Scalloped depressions and small-sized polygons in western Utopia Planitia, Mars: A new formation hypothesis , 2011 .

[38]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[39]  C. B. Farmer,et al.  Water vapor diffusion in Mars subsurface environments , 2007 .

[40]  N. Barlow,et al.  Latitude dependence of Martian pedestal craters: Evidence for a sublimation‐driven formation mechanism , 2009 .

[41]  J. Perron,et al.  Numerical methods for nonlinear hillslope transport laws , 2011 .

[42]  S. Squyres,et al.  Geomorphic Evidence for the Distribution of Ground Ice on Mars , 1986, Science.

[43]  James W. Head,et al.  Kilometer‐scale roughness of Mars: Results from MOLA data analysis , 2000 .

[44]  Cary R. Spitzer,et al.  Physical properties of the surface materials at the Viking landing sites on Mars , 1987 .

[45]  O. Aharonson,et al.  Subsurface ice on Mars with rough topography , 2005 .

[46]  Hugh M. French,et al.  The Periglacial Environment , 1977 .

[47]  Norbert Schorghofer,et al.  Dynamics of ice ages on Mars , 2007, Nature.

[48]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[49]  T. Hanks The Age of Scarplike Landforms From Diffusion‐Equation Analysis , 2013 .

[50]  R. Haberle,et al.  The effect of ground ice on the Martian seasonal CO2 cycle , 2008 .

[51]  M. Carr,et al.  Martian surface/near‐surface water inventory: Sources, sinks, and changes with time , 2015 .

[52]  A. Zent,et al.  Initiation and growth of martian ice lenses , 2014 .

[53]  M. Mellon,et al.  Compositions of subsurface ices at the Mars Phoenix landing site , 2010 .

[54]  Ali Safaeinili,et al.  Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars , 2008, Science.

[55]  Q. Dahe,et al.  Evidence for recent climate change from ice cores in the central Himalaya , 2000, Annals of Glaciology.

[56]  Jeffrey S. Kargel,et al.  Outwash Plains and Thermokarst on Mars , 1995 .

[57]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[58]  Shane Byrne,et al.  A Sublimation Model for Martian South Polar Ice Features , 2003, Science.

[59]  B. Murray,et al.  Behavior of Carbon Dioxide and Other Volatiles on Mars , 1966, Science.

[60]  W. Boynton,et al.  Response of Martian ground ice to orbit‐induced climate change , 2007 .

[61]  M. Mellon,et al.  Periglacial landforms at the Phoenix landing site and the northern plains of Mars , 2008 .

[62]  K. Edgett,et al.  Seasonal surface frost at low latitudes on Mars , 2005 .

[63]  M. Mellon,et al.  Geographic variations in the thermal and diffusive stability of ground ice on Mars , 1993 .

[64]  Jean-Baptiste Madeleine,et al.  Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario , 2009 .

[65]  D. Fisher A process to make massive ice in the martian regolith using long-term diffusion and thermal cracking , 2005 .

[66]  M. Mellon,et al.  Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix , 2010 .

[67]  O. Aharonson,et al.  Diffusion barriers at Mars surface conditions: Salt crusts, particle size mixtures, and dust , 2008 .

[68]  Alan D. Howard,et al.  Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing , 2007 .

[69]  A. McEwen,et al.  Crater population and resurfacing of the Martian north polar layered deposits , 2010 .

[70]  G. Osinski,et al.  Thermokarst lakes and ponds on Mars in the very recent (late Amazonian) past , 2008 .

[71]  A. McEwen,et al.  An assessment of evidence for pingos on Mars using HiRISE , 2010 .

[72]  C. Dundas,et al.  Modeling sublimation of ice exposed by new impacts in the martian mid-latitudes , 2010 .

[73]  William E. Dietrich,et al.  Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology , 1999 .

[74]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[75]  B. Schmitt,et al.  The 3-5 MHz global reflectivity map of Mars by MARSIS/Mars Express: implications for the current inventory of subsurface H2O , 2010 .

[76]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[77]  Raymond E. Arvidson,et al.  Ground ice at the Phoenix Landing Site: Stability state and origin , 2009 .

[78]  J. Breslin The University of Arizona , 2000 .

[79]  S. Conway,et al.  Volcanic terrain and the possible periglacial formation of "excess ice" at the mid-latitudes of Utopia Planitia, Mars , 2015 .

[80]  J. Head,et al.  Preservation of ancient ice at Pavonis and Arsia Mons: Tropical mountain glacier deposits on Mars , 2014 .

[81]  O. Aharonson,et al.  Laboratory experiments and models of diffusive emplacement of ground ice on Mars , 2009 .

[82]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[83]  M. Mellon,et al.  A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site , 2008 .

[84]  C. Fassett,et al.  Crater degradation on the lunar maria: Topographic diffusion and the rate of erosion on the Moon , 2014 .

[85]  E. Hauber,et al.  Thermokarst in Siberian ice‐rich permafrost: Comparison to asymmetric scalloped depressions on Mars , 2010 .