Towards Automatic Generation of 3D Models of Biological Objects Based on Serial Sections

We present a set of coherent methods for the nearly automatic creation of 3D geometric models from large stacks of images of histological sections. Three-dimensional surface models facilitate the visual analysis of 3D anatomy. They also form a basis for standardized anatomical atlases that allow researchers to integrate, accumulate and associate heterogeneous experimental information, like functional or gene-expression data, with spatial or even spatio-temporal reference. Models are created by performing the following steps: image stitching, slice alignment, elastic registration, image segmentation and surface reconstruction. The proposed methods are to a large extent automatic and robust against inevitably occurring imaging artifacts. The option of interactive control at most stages of the modeling process complements automatic methods.

[1]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[2]  Haim Levkowitz,et al.  Color scales for image data , 1992, IEEE Computer Graphics and Applications.

[3]  David Cohen-Steiner,et al.  Extraction and simplification of iso-surfaces in tandem , 2005, SGP '05.

[4]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[5]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Udo Seiffert,et al.  Artificial Neural Networks on Massively Parallel Computer Hardware , 2004, ESANN.

[7]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[8]  Nicholas Ayache,et al.  Some applications of an automatically built 3D morphometric skull atlas , 1996 .

[9]  Markus Löffler,et al.  Three-dimensional reconstruction and quantification of cervical carcinoma invasion fronts from histological serial sections , 2005, IEEE Transactions on Medical Imaging.

[10]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[11]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[12]  R. Menzel,et al.  Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.

[13]  Alain Pitiot,et al.  A multimodal, multidimensional atlas of the C57BL/6J mouse brain , 2004, Journal of anatomy.

[14]  Leif Kobbelt,et al.  A Stream Algorithm for the Decimation of Massive Meshes , 2003, Graphics Interface.

[15]  Jim Haseloff,et al.  Old botanical techniques for new microscopes. , 2003, BioTechniques.

[16]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[17]  Ross T. Whitaker Reducing aliasing artifacts in iso-surfaces of binary volumes , 2000, VVS.

[18]  Jd Landes,et al.  Recent Developments in J Ic Testing , 1977 .

[19]  Stefan Zachow,et al.  Adaptive Remeshing of Non-Manifold Surfaces , 2008, Eurographics.

[20]  Nicholas Ayache,et al.  Medical Image Analysis: Progress over Two Decades and the Challenges Ahead , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  M H Kaufman,et al.  Computer-aided 3-D reconstruction of serially sectioned mouse embryos: its use in integrating anatomical organization. , 1997, The International journal of developmental biology.

[22]  Volker Hartenstein,et al.  Digital three-dimensional models of Drosophila development. , 2004, Current opinion in genetics & development.

[23]  Martin Heisenberg,et al.  A quantitative three-dimensional model of the Drosophila optic lobes , 1999, Current Biology.

[24]  D L Hill,et al.  Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. , 1997, Medical physics.

[25]  H. Hege,et al.  A Generalized Marching Cubes Algorithm Based On Non-Binary Classifications , 1997 .

[26]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[27]  Muriel D. Ross,et al.  Improvements in semiautomated serial section reconstruction and visualization of neural tissue from transmission electron microscope images , 1994, Electronic Imaging.

[28]  CYRUS LEVINTHAL,et al.  Three Dimensional Reconstruction from Serial Sections , 1972, Nature.

[29]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[30]  Tao Ju,et al.  3D volume reconstruction of a mouse brain from histological sections using warp filtering , 2006, Journal of Neuroscience Methods.

[31]  Malte Westerhoff,et al.  Efficient visualization and reconstruction of 3D geometric models from neuro-biological confocal microscope scans , 2001 .

[32]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[33]  Nancy Forbes,et al.  Imitation of Life: How Biology Is Inspiring Computing , 2004 .

[34]  Jan Modersitzki,et al.  Fast inversion of matrices arising in image processing , 1999, Numerical Algorithms.

[35]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[36]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[37]  James F. Brinkley,et al.  Design of an Anatomy Information System , 1999, IEEE Computer Graphics and Applications.

[38]  Tao Ju,et al.  A Digital Atlas to Characterize the Mouse Brain Transcriptome , 2005, PLoS Comput. Biol..

[39]  J Streicher,et al.  External marker‐based automatic congruencing: A new method of 3D reconstruction from serial sections , 1997, The Anatomical record.

[40]  J. Sharpe,et al.  Visualizing Plant Development and Gene Expression in Three Dimensions Using Optical Projection Tomography[W] , 2006, The Plant Cell Online.

[41]  Structural Details in Soybeans: A New Three-dimensional Visualization Method , 2002 .

[42]  Leandro Nunes de Castro,et al.  Recent Developments In Biologically Inspired Computing , 2004 .

[43]  Marc Strickert,et al.  Towards Automatic Segmentation of Serial High-Resolution Images , 2006, Bildverarbeitung für die Medizin.

[44]  Karl Heinz Höhne,et al.  A volume-based anatomical atlas , 1992, IEEE Computer Graphics and Applications.

[45]  Tobias Czauderna,et al.  Implementation of MLP Networks Running Backpropagation on Various Parallel Computer Hardware Using MPI , 2004 .

[46]  Hans-Christian Hege,et al.  Fast Cross-sectional Display of Large Data Sets , 2005, MVA.

[47]  Nicholas Burton,et al.  EMAP and EMAGE - A framework for understanding spatially organized data , 2003, Neuroinformatics.

[48]  S. Glidewell,et al.  NMR imaging of developing barley grains , 2006 .

[49]  R. Jacobs,et al.  Three-dimensional digital mouse atlas using high-resolution MRI. , 2001, Developmental biology.

[50]  Richard Szeliski,et al.  Image Alignment and Stitching , 2006, Handbook of Mathematical Models in Computer Vision.

[51]  Johan A. K. Suykens,et al.  Artificial neural networks for modelling and control of non-linear systems , 1995 .

[52]  Thomas Villmann,et al.  Supervised Neural Gas with General Similarity Measure , 2005, Neural Processing Letters.

[53]  Oliver Schmitt,et al.  Superfast elastic registration of histologic images of a whole rat brain for 3D reconstruction , 2004, SPIE Medical Imaging.

[54]  A. Yamamoto,et al.  Advanced technique for three-dimensional visualization of compound distributions in a rice kernel. , 2001, Journal of agricultural and food chemistry.

[55]  Tao Ju,et al.  Building a 3d atlas of the mouse brain , 2005 .

[56]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[57]  Seungyong Lee,et al.  Out-of-Core Remeshing of Large Polygonal Meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[58]  J. Modersitzki,et al.  Super-fast elastic registration of histologic images of a whole rat brain for three-dimensional reconstruction , 2010 .

[59]  Nicholas Ayache,et al.  Application of an Automatically Built 3D Morphometric Brain Atlas: Study of Cerebral Ventricle Shape , 1996, VBC.

[60]  M. Capecchi,et al.  Virtual Histology of Transgenic Mouse Embryos for High-Throughput Phenotyping , 2006, PLoS genetics.