Illustrating phylogenetic placement of fossils using RoguePlots: An example from ichneumonid parasitoid wasps (Hymenoptera, Ichneumonidae) and an extensive morphological matrix

The fossil record constitutes the primary source of information about the evolutionary history of extant and extinct groups, and many analyses of macroevolution rely on fossils that are accurately placed within phylogenies. To avoid misinterpretation of the fossil record, especially by non-palaeontologists, the proper assessment and communication of uncertainty in fossil placement is crucial. We here use Bayesian morphological phylogenetics to evaluate the classifications of fossil parasitoid wasps (Hymenoptera, Ichneumonidae) and introduce ‘RoguePlots’ to illustrate placement uncertainty on the phylogeny of extant taxa. Based on an extensive, newly constructed morphological matrix of 222 characters in 24 fossil and 103 extant taxa, we test three different aspects of models of morphological evolution. We find that a model that includes ordered characters, among-character rate variation, and a state-space restricted to observed states achieves the highest marginal likelihoods. The individual RoguePlots reveal large differences in confidence in the placement of the different fossils and allow some refinements to their classification: Polyhelictes bipolarus and Ichninsum appendicrassum are moved from an uncertain subfamily placement to Pimplinae, Plectiscidea lanhami is transferred to Allomacrus in Cylloceriinae (Allomacrus lanhami, comb. nov.), Lithotorus cressoni is moved from Diplazontinae to Orthocentrinae, and we note uncertainty in the generic placement of Xanthopimpla? messelensis. We discuss potential artefacts that might result in biased posterior probabilities in Bayesian morphological phylogenetic analyses, pertaining to character and taxon sampling, fossilization biases, and model misspecification. Finally, we suggest future directions both in ichneumonid palaeontology, in the modelling of morphological evolution, and in the way Bayesian phylogenetics can improve both assessment and representation of fossil placement uncertainty.

[1]  Alexandros Stamatakis,et al.  Pruning Rogue Taxa Improves Phylogenetic Accuracy: An Efficient Algorithm and Webservice , 2012, Systematic biology.

[2]  H. Townes The Genera of Ichneumonidae, Part 1 , 1969, Anzeiger für Schädlingskunde.

[3]  D. Kopylov New species of Praeichneumonidae (Hymenoptera, Ichneumonoidea) from the Lower Cretaceous of Transbaikalia , 2012, Paleontological Journal.

[4]  P. Goloboff,et al.  Parsimony and model‐based phylogenetic methods for morphological data: comments on O'Reilly et al. , 2018 .

[5]  Mark N. Puttick,et al.  Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data , 2016, Biology Letters.

[6]  A. Rasnitsyn,et al.  The wasps, bees and ants (Insecta: Vespida=Hymenoptera) from the Insect Limestone (Late Eocene) of the Isle of Wight, UK , 2013, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[7]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[8]  Michael J. Landis,et al.  RevBayes: Bayesian Phylogenetic Inference Using Graphical Models and an Interactive Model-Specification Language , 2016, Systematic biology.

[9]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[10]  C. Labandeira,et al.  The Fossil Record of Plant-Insect Dynamics , 2013 .

[11]  Michael S. Y. Lee,et al.  Morphological clocks in paleontology, and a mid-Cretaceous origin of crown Aves. , 2014, Systematic biology.

[12]  N. Matzke,et al.  Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria) , 2016, Biology Letters.

[13]  T. Cockerell,et al.  The Antiquity of Insect Structures , 1931, The American Naturalist.

[14]  J. Huelsenbeck,et al.  A Bayesian perspective on a non-parsimonious parsimony model. , 2008, Systematic biology.

[15]  I. Gauld,et al.  The suprageneric groups ofthe Pimplinae (Hymenoptera: Ichneumonidae): a cladistic re-evaluationand evolutionary biological study , 2002 .

[16]  M. Fitton,et al.  A thousand and one wasps: a 28S rDNA and morphological phylogeny of the Ichneumonidae (Insecta: Hymenoptera) with an investigation into alignment parameter space and elision , 2009 .

[17]  L. O.,et al.  A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data , 2002 .

[18]  Christopher J. Lee,et al.  Wagner and Dollo: a stochastic duet by composing two parsimonious solos. , 2008, Systematic biology.

[19]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[20]  C. T. Brues The parasitic Hymenoptera of the Tertiary of Florissant, Colorado , 1910 .

[21]  M. Wilkinson,et al.  Majority-rule reduced consensus trees and their use in bootstrapping. , 1996, Molecular biology and evolution.

[22]  J. Felsenstein Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.

[23]  K. Middleton,et al.  Mosaicism, modules, and the evolution of birds: results from a Bayesian approach to the study of morphological evolution using discrete character data. , 2008, Systematic biology.

[24]  Michael S. Y. Lee,et al.  Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals , 2014, Proceedings of the Royal Society B: Biological Sciences.

[25]  T. Cockerell Eocene insects from the Rocky Mountains , 1920 .

[26]  D. Kopylov A new subfamily of ichneumonids from the Lower Cretaceous of Transbaikalia and Mongolia (Insecta: Hymenoptera: Ichneumonidae) , 2009 .

[27]  D. Hillis,et al.  Modeling Character Change Heterogeneity in Phylogenetic Analyses of Morphology through the Use of Priors. , 2016, Systematic biology.

[28]  Michael S. Y. Lee Multiple morphological clocks and total-evidence tip-dating in mammals , 2016, Biology Letters.

[29]  Graeme T. Lloyd,et al.  Evidence for a Mid-Jurassic Adaptive Radiation in Mammals , 2015, Current Biology.

[30]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[31]  R. F. Kay Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution? , 2015, Molecular phylogenetics and evolution.

[32]  Xing Xu,et al.  An Archaeopteryx-like theropod from China and the origin of Avialae , 2011, Nature.

[33]  Mark N. Puttick,et al.  Empirical realism of simulated data is more important than the model used to generate it: a reply to Goloboff et al. , 2018 .

[34]  S. Klopfstein,et al.  New ichneumonids (Hymenoptera, Ichneumonidae) from the Eocene Tadushi Formation, Russian Far East. , 2018, Zootaxa.

[35]  S. Klopfstein,et al.  Ichneumonid parasitoid wasps from the Early Eocene Green River Formation: five new species and a revision of the known fauna (Hymenoptera, Ichneumonidae) , 2018, PalZ.

[36]  E. Peñalver,et al.  Taphonomy of insects in carbonates and amber , 2004 .

[37]  A. I. Khalaim Fossil ichneumon wasps (hymenoptera: Ichneumonidae) from Biamo (Russia), Oligocene , 2008 .

[38]  A. Wortley,et al.  The effect of combining molecular and morphological data in published phylogenetic analyses. , 2006, Systematic biology.

[39]  G. Broad,et al.  Revision of the genus Xanthopimpla Saussure (Hymenoptera: Ichneumonidae: Pimplinae) in Vietnam, with descriptions of fourteen new species , 2011 .

[40]  Z. Yang,et al.  Among-site rate variation and its impact on phylogenetic analyses. , 1996, Trends in ecology & evolution.

[41]  Christopher,et al.  Best Practices for Justifying Fossil Calibrations , 2011, Systematic Biology.

[42]  P. Wagner,et al.  A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa , 1998, Paleobiology.

[43]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[44]  D. Kopylov A new subfamily of ichneumon wasps (Insecta: Hymenoptera: Ichneumonidae) from the Upper Cretaceous of the Russian Far East , 2010 .

[45]  M. Wills How good is the fossil record of arthropods? An assessment using the stratigraphic congruence of cladograms , 2001 .

[46]  T. Cockerell Some fossil parasitic Hymenoptera , 1919 .

[47]  P. O’Connor,et al.  Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history , 2016, Biology Letters.

[48]  I. Gauld,et al.  Homoplasy and the delineation of holophyletic genera in some insect groups , 1982 .

[49]  Ming-Hui Chen,et al.  Improving marginal likelihood estimation for Bayesian phylogenetic model selection. , 2011, Systematic biology.

[50]  P. David,et al.  Diversity spurs diversification in ecological communities , 2017, Nature Communications.

[51]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[52]  B. Santos Phylogeny and reclassification of Cryptini (Hymenoptera, Ichneumonidae, Cryptinae), with implications for ichneumonid higher‐level classification , 2017 .

[53]  Evolution of large body size in abalones (Haliotis): patterns and implications , 2005, Paleobiology.

[54]  K. Thiele THE HOLY GRAIL OF THE PERFECT CHARACTER: THE CLADISTIC TREATMENT OF MORPHOMETRIC DATA , 1993, Cladistics : the international journal of the Willi Hennig Society.

[55]  David F. Wright,et al.  Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata) , 2017, Journal of Paleontology.

[56]  M. Benton,et al.  Rocks and clocks: calibrating the Tree of Life using fossils and molecules. , 2007, Trends in ecology & evolution.

[57]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[58]  Robert S. Sansom,et al.  Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees , 2013, Scientific Reports.

[59]  J. Rust Biostratinomie von Insekten aus der Fur-Formation von Dänemark (Moler, oberes Paleozän / unteres Eozän) , 1998 .

[60]  J. Slowinski “Unordered” Versus “Ordered” Characters , 1993 .

[61]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[62]  L. Harmon,et al.  INTEGRATING FOSSILS WITH MOLECULAR PHYLOGENIES IMPROVES INFERENCE OF TRAIT EVOLUTION , 2012, Evolution; international journal of organic evolution.

[63]  S. H. Scudder The Tertiary Insects of North America , 2011 .

[64]  H. Townes The Genera of Ichneumonidae , 1969, Anzeiger für Schädlingskunde.

[65]  T. Cockerell Some Tertiary Insects (Hymenoptera) From Colorado , 1941 .

[66]  D. Hunter Feature , 2011 .

[67]  S. Klopfstein,et al.  Seven remarkable new fossil species of parasitoid wasps (Hymenoptera, Ichneumonidae) from the Eocene Messel Pit , 2018, PloS one.

[68]  J. Wiens The role of morphological data in phylogeny reconstruction. , 2004, Systematic biology.

[69]  Michael S. Y. Lee,et al.  Morphological Phylogenetics in the Genomic Age , 2015, Current Biology.

[70]  F. Ronquist,et al.  A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology , 2015, Systematic biology.

[71]  T. Cockerell Some Eocene insects from Colorado and Wyoming , 1921 .

[72]  Jonathan P. Bollback,et al.  Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology , 2001, Science.